数据流分类中的聚类决策树框架

Lin Qian, Liangxi Qin
{"title":"数据流分类中的聚类决策树框架","authors":"Lin Qian, Liangxi Qin","doi":"10.1109/IHMSC.2012.15","DOIUrl":null,"url":null,"abstract":"Recently, data streams classification with concept drifting has drawn increasing attention of scholars in data mining, due to the deficiencies of existing algorithms in accuracy and efficient. In this paper, we propose a framework for handling the problem mentioned above using cluster decision tree. We cluster those data which cannot be classified temporarily into n class, and generate new branches of the VFDT based on cluster result or replace original ones. Our empirical study shows that the proposed method has substantial advantages over traditional classifiers in prediction accuracy and efficiency.","PeriodicalId":431532,"journal":{"name":"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Framework of Cluster Decision Tree in Data Stream Classification\",\"authors\":\"Lin Qian, Liangxi Qin\",\"doi\":\"10.1109/IHMSC.2012.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, data streams classification with concept drifting has drawn increasing attention of scholars in data mining, due to the deficiencies of existing algorithms in accuracy and efficient. In this paper, we propose a framework for handling the problem mentioned above using cluster decision tree. We cluster those data which cannot be classified temporarily into n class, and generate new branches of the VFDT based on cluster result or replace original ones. Our empirical study shows that the proposed method has substantial advantages over traditional classifiers in prediction accuracy and efficiency.\",\"PeriodicalId\":431532,\"journal\":{\"name\":\"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2012.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,由于现有算法在准确性和效率上的不足,带有概念漂移的数据流分类越来越受到数据挖掘领域学者的关注。在本文中,我们提出了一个使用聚类决策树处理上述问题的框架。我们将暂时无法分类的数据聚类为n类,并根据聚类结果生成新的VFDT分支或替换原有分支。我们的实证研究表明,该方法在预测精度和效率上都比传统分类器有很大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework of Cluster Decision Tree in Data Stream Classification
Recently, data streams classification with concept drifting has drawn increasing attention of scholars in data mining, due to the deficiencies of existing algorithms in accuracy and efficient. In this paper, we propose a framework for handling the problem mentioned above using cluster decision tree. We cluster those data which cannot be classified temporarily into n class, and generate new branches of the VFDT based on cluster result or replace original ones. Our empirical study shows that the proposed method has substantial advantages over traditional classifiers in prediction accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信