基于最小相空间体积的系统快速辨识方法

Xinzhi Xu, Jingbo Guo
{"title":"基于最小相空间体积的系统快速辨识方法","authors":"Xinzhi Xu, Jingbo Guo","doi":"10.1109/CyberC.2012.96","DOIUrl":null,"url":null,"abstract":"In this paper, the minimum phase space volume (MPSV) method is modified to identify an autoregressive (AR) system driven by a chaotic signal blindly. After modification, the estimation speed is much faster than before, which makes the MPSV method more suitable for engineering applications. The simulation results show that, when comparing with the original MPSV method, the proposed method can obtain the same estimation result at a much higher speed.","PeriodicalId":416468,"journal":{"name":"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Fast System Identification Method Based on Minimum Phase Space Volume\",\"authors\":\"Xinzhi Xu, Jingbo Guo\",\"doi\":\"10.1109/CyberC.2012.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the minimum phase space volume (MPSV) method is modified to identify an autoregressive (AR) system driven by a chaotic signal blindly. After modification, the estimation speed is much faster than before, which makes the MPSV method more suitable for engineering applications. The simulation results show that, when comparing with the original MPSV method, the proposed method can obtain the same estimation result at a much higher speed.\",\"PeriodicalId\":416468,\"journal\":{\"name\":\"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberC.2012.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC.2012.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对最小相空间体积(MPSV)方法进行了改进,以识别混沌信号盲驱动的自回归系统。改进后的估计速度大大提高,使MPSV方法更适合工程应用。仿真结果表明,与原MPSV方法相比,该方法可以在更高的速度下获得相同的估计结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast System Identification Method Based on Minimum Phase Space Volume
In this paper, the minimum phase space volume (MPSV) method is modified to identify an autoregressive (AR) system driven by a chaotic signal blindly. After modification, the estimation speed is much faster than before, which makes the MPSV method more suitable for engineering applications. The simulation results show that, when comparing with the original MPSV method, the proposed method can obtain the same estimation result at a much higher speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信