并行稀疏张量代数的优化压缩方案

Helen Xu, T. Schardl, Michael Pellauer, J. Emer
{"title":"并行稀疏张量代数的优化压缩方案","authors":"Helen Xu, T. Schardl, Michael Pellauer, J. Emer","doi":"10.1109/DCC55655.2023.00084","DOIUrl":null,"url":null,"abstract":"This paper studies compression techniques for parallel in-memory sparse tensor algebra. Although one might hope that sufficiently simple compression schemes would generally improve performance by decreasing memory traffic when the computation is memory-bound, we find that applying existing simple compression schemes can lead to performance loss due to the additional computational overhead. To resolve this issue, we introduce a novel algorithm called byte-opt, an optimized version of the byte format from the Ligra + graph-processing framework [1] that saves space without sacrificing performance. The byte-opt format takes advantage of per-row structure to speed up decoding without changing the underlying representation from byte.","PeriodicalId":209029,"journal":{"name":"2023 Data Compression Conference (DCC)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Compression Schemes for Parallel Sparse Tensor Algebra\",\"authors\":\"Helen Xu, T. Schardl, Michael Pellauer, J. Emer\",\"doi\":\"10.1109/DCC55655.2023.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies compression techniques for parallel in-memory sparse tensor algebra. Although one might hope that sufficiently simple compression schemes would generally improve performance by decreasing memory traffic when the computation is memory-bound, we find that applying existing simple compression schemes can lead to performance loss due to the additional computational overhead. To resolve this issue, we introduce a novel algorithm called byte-opt, an optimized version of the byte format from the Ligra + graph-processing framework [1] that saves space without sacrificing performance. The byte-opt format takes advantage of per-row structure to speed up decoding without changing the underlying representation from byte.\",\"PeriodicalId\":209029,\"journal\":{\"name\":\"2023 Data Compression Conference (DCC)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Data Compression Conference (DCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC55655.2023.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC55655.2023.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了并行内存稀疏张量代数的压缩技术。尽管人们可能希望足够简单的压缩方案能够在计算受内存限制时通过减少内存流量来提高性能,但我们发现,由于额外的计算开销,应用现有的简单压缩方案可能会导致性能损失。为了解决这个问题,我们引入了一种名为byte-opt的新算法,它是来自Ligra +图形处理框架[1]的字节格式的优化版本,可以在不牺牲性能的情况下节省空间。byte-opt格式利用逐行结构来加速解码,而无需改变字节的底层表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Compression Schemes for Parallel Sparse Tensor Algebra
This paper studies compression techniques for parallel in-memory sparse tensor algebra. Although one might hope that sufficiently simple compression schemes would generally improve performance by decreasing memory traffic when the computation is memory-bound, we find that applying existing simple compression schemes can lead to performance loss due to the additional computational overhead. To resolve this issue, we introduce a novel algorithm called byte-opt, an optimized version of the byte format from the Ligra + graph-processing framework [1] that saves space without sacrificing performance. The byte-opt format takes advantage of per-row structure to speed up decoding without changing the underlying representation from byte.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信