S. M. Iranmanesh, Ali Dabouei, Hadi Kazemi, N. Nasrabadi
{"title":"深交叉极化热-可见人脸识别","authors":"S. M. Iranmanesh, Ali Dabouei, Hadi Kazemi, N. Nasrabadi","doi":"10.1109/ICB2018.2018.00034","DOIUrl":null,"url":null,"abstract":"In this paper, we present a deep coupled learning framework to address the problem of matching polarimetric thermal face photos against a gallery of visible faces. Polarization state information of thermal faces provides the missing textural and geometrics details in the thermal face imagery which exist in visible spectrum. we propose a coupled deep neural network architecture which leverages relatively large visible and thermal datasets to overcome the problem of overfitting and eventually we train it by a polarimetric thermal face dataset which is the first of its kind. The proposed architecture is able to make full use of the polarimetric thermal information to train a deep model compared to the conventional shallow thermal-to-visible face recognition methods. Proposed coupled deep neural network also finds global discriminative features in a nonlinear embedding space to relate the polarimetric thermal faces to their corresponding visible faces. The results show the superiority of our method compared to the state-of-the-art models in cross thermal-to-visible face recognition algorithms.","PeriodicalId":130957,"journal":{"name":"2018 International Conference on Biometrics (ICB)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Deep Cross Polarimetric Thermal-to-Visible Face Recognition\",\"authors\":\"S. M. Iranmanesh, Ali Dabouei, Hadi Kazemi, N. Nasrabadi\",\"doi\":\"10.1109/ICB2018.2018.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a deep coupled learning framework to address the problem of matching polarimetric thermal face photos against a gallery of visible faces. Polarization state information of thermal faces provides the missing textural and geometrics details in the thermal face imagery which exist in visible spectrum. we propose a coupled deep neural network architecture which leverages relatively large visible and thermal datasets to overcome the problem of overfitting and eventually we train it by a polarimetric thermal face dataset which is the first of its kind. The proposed architecture is able to make full use of the polarimetric thermal information to train a deep model compared to the conventional shallow thermal-to-visible face recognition methods. Proposed coupled deep neural network also finds global discriminative features in a nonlinear embedding space to relate the polarimetric thermal faces to their corresponding visible faces. The results show the superiority of our method compared to the state-of-the-art models in cross thermal-to-visible face recognition algorithms.\",\"PeriodicalId\":130957,\"journal\":{\"name\":\"2018 International Conference on Biometrics (ICB)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB2018.2018.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB2018.2018.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Cross Polarimetric Thermal-to-Visible Face Recognition
In this paper, we present a deep coupled learning framework to address the problem of matching polarimetric thermal face photos against a gallery of visible faces. Polarization state information of thermal faces provides the missing textural and geometrics details in the thermal face imagery which exist in visible spectrum. we propose a coupled deep neural network architecture which leverages relatively large visible and thermal datasets to overcome the problem of overfitting and eventually we train it by a polarimetric thermal face dataset which is the first of its kind. The proposed architecture is able to make full use of the polarimetric thermal information to train a deep model compared to the conventional shallow thermal-to-visible face recognition methods. Proposed coupled deep neural network also finds global discriminative features in a nonlinear embedding space to relate the polarimetric thermal faces to their corresponding visible faces. The results show the superiority of our method compared to the state-of-the-art models in cross thermal-to-visible face recognition algorithms.