一种多访问边缘计算资源分配策略分析框架

Kaustabha Ray, A. Banerjee
{"title":"一种多访问边缘计算资源分配策略分析框架","authors":"Kaustabha Ray, A. Banerjee","doi":"10.1109/EDGE53862.2021.00023","DOIUrl":null,"url":null,"abstract":"Multi-Access Edge Computing (MEC) is a promising new paradigm enabling low-latency access to services deployed on edge servers. This helps to avert network latencies often encountered in accessing cloud services. The cornerstone of a MEC environment is a resource allocation policy used to partition and allocate computational resources such as bandwidth, memory available on the edge server to user service invocations availing such services. In this work, we propose a generic data-driven framework to model and analyze such MEC resource allocation policies. We model a MEC system as a Turn-Based Stochastic Multi-Player Game and use Probabilistic Model Checking to derive quantitative guarantees on resource allocation policies against requirements expressed in Probabilistic Alternating-Time Temporal Logic with Rewards. We present results on state-of-the-art MEC resource allocation policies to demonstrate the effectiveness of our framework.","PeriodicalId":115969,"journal":{"name":"2021 IEEE International Conference on Edge Computing (EDGE)","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Framework for Analyzing Resource Allocation Policies for Multi-Access Edge Computing\",\"authors\":\"Kaustabha Ray, A. Banerjee\",\"doi\":\"10.1109/EDGE53862.2021.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-Access Edge Computing (MEC) is a promising new paradigm enabling low-latency access to services deployed on edge servers. This helps to avert network latencies often encountered in accessing cloud services. The cornerstone of a MEC environment is a resource allocation policy used to partition and allocate computational resources such as bandwidth, memory available on the edge server to user service invocations availing such services. In this work, we propose a generic data-driven framework to model and analyze such MEC resource allocation policies. We model a MEC system as a Turn-Based Stochastic Multi-Player Game and use Probabilistic Model Checking to derive quantitative guarantees on resource allocation policies against requirements expressed in Probabilistic Alternating-Time Temporal Logic with Rewards. We present results on state-of-the-art MEC resource allocation policies to demonstrate the effectiveness of our framework.\",\"PeriodicalId\":115969,\"journal\":{\"name\":\"2021 IEEE International Conference on Edge Computing (EDGE)\",\"volume\":\"236 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Edge Computing (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE53862.2021.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Edge Computing (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE53862.2021.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

多访问边缘计算(Multi-Access Edge Computing, MEC)是一种很有前途的新范例,它支持对部署在边缘服务器上的服务进行低延迟访问。这有助于避免访问云服务时经常遇到的网络延迟。MEC环境的基础是资源分配策略,用于将计算资源(如边缘服务器上可用的带宽和内存)划分和分配给使用这些服务的用户服务调用。在这项工作中,我们提出了一个通用的数据驱动框架来建模和分析这种MEC资源分配策略。我们将MEC系统建模为一个基于回合制的随机多人博弈,并使用概率模型检查来推导出资源分配策略的定量保证,以满足带有奖励的概率交替时间时间逻辑所表达的需求。我们展示了最先进的MEC资源分配政策的结果,以证明我们的框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Analyzing Resource Allocation Policies for Multi-Access Edge Computing
Multi-Access Edge Computing (MEC) is a promising new paradigm enabling low-latency access to services deployed on edge servers. This helps to avert network latencies often encountered in accessing cloud services. The cornerstone of a MEC environment is a resource allocation policy used to partition and allocate computational resources such as bandwidth, memory available on the edge server to user service invocations availing such services. In this work, we propose a generic data-driven framework to model and analyze such MEC resource allocation policies. We model a MEC system as a Turn-Based Stochastic Multi-Player Game and use Probabilistic Model Checking to derive quantitative guarantees on resource allocation policies against requirements expressed in Probabilistic Alternating-Time Temporal Logic with Rewards. We present results on state-of-the-art MEC resource allocation policies to demonstrate the effectiveness of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信