基于haar特征的人脸识别分类器训练参数分析

Supratim Gupta, A. Dasgupta, A. Routray
{"title":"基于haar特征的人脸识别分类器训练参数分析","authors":"Supratim Gupta, A. Dasgupta, A. Routray","doi":"10.1109/ICIIP.2011.6108889","DOIUrl":null,"url":null,"abstract":"This paper analyzes the performance of the Haar-like feature based classifier for detection of face with fewer features. The lower dimensional feature space representation of the image may reduce the computational burden compromising the accuracy in detection of faces with varying orientations. In this work we train the classifier with positive instances of different orientations under such feature constraint. The training parameters like maximum deviation and maximum angle are varied to form different classifiers. Experimental results show optimum values of the design parameters can produce good performance of the classifier to detect frontal as well as tilted human faces.","PeriodicalId":201779,"journal":{"name":"2011 International Conference on Image Information Processing","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Analysis of training parameters for classifiers based on Haar-like features to detect human faces\",\"authors\":\"Supratim Gupta, A. Dasgupta, A. Routray\",\"doi\":\"10.1109/ICIIP.2011.6108889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the performance of the Haar-like feature based classifier for detection of face with fewer features. The lower dimensional feature space representation of the image may reduce the computational burden compromising the accuracy in detection of faces with varying orientations. In this work we train the classifier with positive instances of different orientations under such feature constraint. The training parameters like maximum deviation and maximum angle are varied to form different classifiers. Experimental results show optimum values of the design parameters can produce good performance of the classifier to detect frontal as well as tilted human faces.\",\"PeriodicalId\":201779,\"journal\":{\"name\":\"2011 International Conference on Image Information Processing\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Image Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIP.2011.6108889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Image Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIP.2011.6108889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文分析了基于haar特征的分类器在特征较少的人脸检测中的性能。图像的低维特征空间表示可以减少计算量,从而降低检测具有不同方向的人脸的准确性。在这项工作中,我们在这种特征约束下使用不同方向的正实例来训练分类器。改变最大偏差、最大角度等训练参数,形成不同的分类器。实验结果表明,设计参数的最优值可以使分类器在检测正面人脸和倾斜人脸方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of training parameters for classifiers based on Haar-like features to detect human faces
This paper analyzes the performance of the Haar-like feature based classifier for detection of face with fewer features. The lower dimensional feature space representation of the image may reduce the computational burden compromising the accuracy in detection of faces with varying orientations. In this work we train the classifier with positive instances of different orientations under such feature constraint. The training parameters like maximum deviation and maximum angle are varied to form different classifiers. Experimental results show optimum values of the design parameters can produce good performance of the classifier to detect frontal as well as tilted human faces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信