基于深度神经网络的拉丁文和中文字符迁移学习

D. Ciresan, U. Meier, J. Schmidhuber
{"title":"基于深度神经网络的拉丁文和中文字符迁移学习","authors":"D. Ciresan, U. Meier, J. Schmidhuber","doi":"10.1109/IJCNN.2012.6252544","DOIUrl":null,"url":null,"abstract":"We analyze transfer learning with Deep Neural Networks (DNN) on various character recognition tasks. DNN trained on digits are perfectly capable of recognizing uppercase letters with minimal retraining. They are on par with DNN fully trained on uppercase letters, but train much faster. DNN trained on Chinese characters easily recognize uppercase Latin letters. Learning Chinese characters is accelerated by first pretraining a DNN on a small subset of all classes and then continuing to train on all classes. Furthermore, pretrained nets consistently outperform randomly initialized nets on new tasks with few labeled data.","PeriodicalId":287844,"journal":{"name":"The 2012 International Joint Conference on Neural Networks (IJCNN)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"207","resultStr":"{\"title\":\"Transfer learning for Latin and Chinese characters with Deep Neural Networks\",\"authors\":\"D. Ciresan, U. Meier, J. Schmidhuber\",\"doi\":\"10.1109/IJCNN.2012.6252544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze transfer learning with Deep Neural Networks (DNN) on various character recognition tasks. DNN trained on digits are perfectly capable of recognizing uppercase letters with minimal retraining. They are on par with DNN fully trained on uppercase letters, but train much faster. DNN trained on Chinese characters easily recognize uppercase Latin letters. Learning Chinese characters is accelerated by first pretraining a DNN on a small subset of all classes and then continuing to train on all classes. Furthermore, pretrained nets consistently outperform randomly initialized nets on new tasks with few labeled data.\",\"PeriodicalId\":287844,\"journal\":{\"name\":\"The 2012 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"215 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"207\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2012 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2012.6252544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2012 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2012.6252544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 207

摘要

我们分析了深度神经网络(DNN)在各种字符识别任务中的迁移学习。经过数字训练的深度神经网络完全能够识别大写字母,只需最少的再训练。它们与经过大写字母训练的DNN相当,但训练速度要快得多。经过汉字训练的深度神经网络很容易识别大写拉丁字母。通过首先在所有类的一小部分上预训练DNN,然后继续在所有类上训练,可以加速汉字的学习。此外,在标记数据较少的新任务上,预训练的网络始终优于随机初始化的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer learning for Latin and Chinese characters with Deep Neural Networks
We analyze transfer learning with Deep Neural Networks (DNN) on various character recognition tasks. DNN trained on digits are perfectly capable of recognizing uppercase letters with minimal retraining. They are on par with DNN fully trained on uppercase letters, but train much faster. DNN trained on Chinese characters easily recognize uppercase Latin letters. Learning Chinese characters is accelerated by first pretraining a DNN on a small subset of all classes and then continuing to train on all classes. Furthermore, pretrained nets consistently outperform randomly initialized nets on new tasks with few labeled data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信