{"title":"TaskShuffler:一种针对实时系统中时序推理攻击的混淆调度随机化协议","authors":"Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, L. Sha","doi":"10.1109/RTAS.2016.7461362","DOIUrl":null,"url":null,"abstract":"The high degree of predictability in real-time systems makes it possible for adversaries to launch timing inference attacks such as those based on side-channels and covert-channels. We present TaskShuffler, a schedule obfuscation method aimed at randomizing the schedule for such systems while still providing the real-time guarantees that are necessary for their safe operation. This paper also analyzes the effect of these mechanisms by presenting schedule entropy - a metric to measure the uncertainty (as perceived by attackers) introduced by TaskShuffler. These mechanisms will increase the difficulty for would-be attackers thus improving the overall security guarantees for real-time systems.","PeriodicalId":338179,"journal":{"name":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"TaskShuffler: A Schedule Randomization Protocol for Obfuscation against Timing Inference Attacks in Real-Time Systems\",\"authors\":\"Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, L. Sha\",\"doi\":\"10.1109/RTAS.2016.7461362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high degree of predictability in real-time systems makes it possible for adversaries to launch timing inference attacks such as those based on side-channels and covert-channels. We present TaskShuffler, a schedule obfuscation method aimed at randomizing the schedule for such systems while still providing the real-time guarantees that are necessary for their safe operation. This paper also analyzes the effect of these mechanisms by presenting schedule entropy - a metric to measure the uncertainty (as perceived by attackers) introduced by TaskShuffler. These mechanisms will increase the difficulty for would-be attackers thus improving the overall security guarantees for real-time systems.\",\"PeriodicalId\":338179,\"journal\":{\"name\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2016.7461362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2016.7461362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TaskShuffler: A Schedule Randomization Protocol for Obfuscation against Timing Inference Attacks in Real-Time Systems
The high degree of predictability in real-time systems makes it possible for adversaries to launch timing inference attacks such as those based on side-channels and covert-channels. We present TaskShuffler, a schedule obfuscation method aimed at randomizing the schedule for such systems while still providing the real-time guarantees that are necessary for their safe operation. This paper also analyzes the effect of these mechanisms by presenting schedule entropy - a metric to measure the uncertainty (as perceived by attackers) introduced by TaskShuffler. These mechanisms will increase the difficulty for would-be attackers thus improving the overall security guarantees for real-time systems.