无限时间维非线性环形空腔混沌的非feigenbaum路径

M. Le Berre, E. Ressayre, A. Tallet, H. Gibbs
{"title":"无限时间维非线性环形空腔混沌的非feigenbaum路径","authors":"M. Le Berre, E. Ressayre, A. Tallet, H. Gibbs","doi":"10.1364/idlnos.1985.wd32","DOIUrl":null,"url":null,"abstract":"The equations of motion for a ring cavity containing a cell of two-level atoms are where E0 and ε(t) are the cw input and intracavity electric field amplitudes at the input mirror. The phase difference {ϕ(t) - ϕ(0)} gives a measure of the amount of energy absorbed by the atoms and χϕ(t) is proportional to the instantaneous complex nonlinear refractive index. Other parameters in Eqs. (1) and (2) are the reflectivity factor R = 1 - T, γ-1 the inversion relaxation time for an atom, and τR the round-trip time.","PeriodicalId":262701,"journal":{"name":"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems","volume":"367 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-Feigenbaum Route to Chaos of a Nonlinear Ring Cavity with Infinite Temporal Dimension\",\"authors\":\"M. Le Berre, E. Ressayre, A. Tallet, H. Gibbs\",\"doi\":\"10.1364/idlnos.1985.wd32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The equations of motion for a ring cavity containing a cell of two-level atoms are where E0 and ε(t) are the cw input and intracavity electric field amplitudes at the input mirror. The phase difference {ϕ(t) - ϕ(0)} gives a measure of the amount of energy absorbed by the atoms and χϕ(t) is proportional to the instantaneous complex nonlinear refractive index. Other parameters in Eqs. (1) and (2) are the reflectivity factor R = 1 - T, γ-1 the inversion relaxation time for an atom, and τR the round-trip time.\",\"PeriodicalId\":262701,\"journal\":{\"name\":\"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems\",\"volume\":\"367 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/idlnos.1985.wd32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Meeting on Instabilities and Dynamics of Lasers and Nonlinear Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/idlnos.1985.wd32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

包含两能级原子单元的环形腔的运动方程为,其中E0和ε(t)是连续波输入和腔内电场在输入镜处的振幅。相位差{φ (t) - φ(0)}给出了原子吸收能量的度量,χ φ (t)与瞬时复非线性折射率成正比。等式中的其他参数。(1)和(2)分别为反射率因子R = 1 - T, γ-1为原子的反转弛豫时间,τR为往返时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Feigenbaum Route to Chaos of a Nonlinear Ring Cavity with Infinite Temporal Dimension
The equations of motion for a ring cavity containing a cell of two-level atoms are where E0 and ε(t) are the cw input and intracavity electric field amplitudes at the input mirror. The phase difference {ϕ(t) - ϕ(0)} gives a measure of the amount of energy absorbed by the atoms and χϕ(t) is proportional to the instantaneous complex nonlinear refractive index. Other parameters in Eqs. (1) and (2) are the reflectivity factor R = 1 - T, γ-1 the inversion relaxation time for an atom, and τR the round-trip time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信