财务相关矩阵的噪声去除与信息识别

Jianqiang Sun
{"title":"财务相关矩阵的噪声去除与信息识别","authors":"Jianqiang Sun","doi":"10.1109/ISCSCT.2008.345","DOIUrl":null,"url":null,"abstract":"We apply the random-matrix approach to undress the noise of the cross correlation matrix constructed from Shanghai Stock Exchange (SSE) for the period 2001-2008. The empirical evidence shows that, about 7.4% of the eigenvalues fall out the RMT bounds, and the eigenvalues within the bounds agree with the universal properties of random matrix, implying a large degree of noise in the correlation matrix. We also find that SSE has a particularly high value of the largest eigenvalues of 209.26, which is significantly different from other exchanges.","PeriodicalId":228533,"journal":{"name":"2008 International Symposium on Computer Science and Computational Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Noise Undressing and Information Identifying of the Financial Correlation Matrix\",\"authors\":\"Jianqiang Sun\",\"doi\":\"10.1109/ISCSCT.2008.345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the random-matrix approach to undress the noise of the cross correlation matrix constructed from Shanghai Stock Exchange (SSE) for the period 2001-2008. The empirical evidence shows that, about 7.4% of the eigenvalues fall out the RMT bounds, and the eigenvalues within the bounds agree with the universal properties of random matrix, implying a large degree of noise in the correlation matrix. We also find that SSE has a particularly high value of the largest eigenvalues of 209.26, which is significantly different from other exchanges.\",\"PeriodicalId\":228533,\"journal\":{\"name\":\"2008 International Symposium on Computer Science and Computational Technology\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Computer Science and Computational Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSCT.2008.345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Computer Science and Computational Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSCT.2008.345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们应用随机矩阵方法来消除2001-2008年上海证券交易所(SSE)相互关联矩阵的噪声。经验证据表明,约7.4%的特征值落在RMT边界之外,边界内的特征值符合随机矩阵的普遍性质,这意味着相关矩阵中存在很大程度的噪声。我们还发现,上交所的最大特征值为209.26,特别高,与其他交易所明显不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise Undressing and Information Identifying of the Financial Correlation Matrix
We apply the random-matrix approach to undress the noise of the cross correlation matrix constructed from Shanghai Stock Exchange (SSE) for the period 2001-2008. The empirical evidence shows that, about 7.4% of the eigenvalues fall out the RMT bounds, and the eigenvalues within the bounds agree with the universal properties of random matrix, implying a large degree of noise in the correlation matrix. We also find that SSE has a particularly high value of the largest eigenvalues of 209.26, which is significantly different from other exchanges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信