基于区域划分的水下大坝裂缝图像拼接算法

Yuanbo Huang, Zhuo Zhang, Xiaolong Xu
{"title":"基于区域划分的水下大坝裂缝图像拼接算法","authors":"Yuanbo Huang, Zhuo Zhang, Xiaolong Xu","doi":"10.1109/PIC53636.2021.9687041","DOIUrl":null,"url":null,"abstract":"The surface crack of underwater dam is one of the important indexes to evaluate the normal operation of the dam. Complete crack image is an important means to improve the accuracy of evaluation. In view of the limitations of traditional Algorithms in underwater crack image stitching, we propose an underwater dam surface crack image stitching algorithm based on region division(ISA-RD). First of all, an image enhancement algorithm aiming at increasing the number of feature points is used. Secondly, we simplify the process of feature point selection and matching by relying on the features of multiple regions in the local crack image, and improve the matching accuracy by mining the close relationship between the matching of feature points and different regions. Finally, the high matching feature point pairs are used for image fusion. We take the crack image of the real scene as the research object. Compared with the classical image stitching algorithm, the feature point matching algorithm proposed in this paper improves the accuracy of feature point matching. Obviously, the image quality after stitching is improved.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Stitching Algorithm Based on Region Division for Underwater Dam Crack Image\",\"authors\":\"Yuanbo Huang, Zhuo Zhang, Xiaolong Xu\",\"doi\":\"10.1109/PIC53636.2021.9687041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surface crack of underwater dam is one of the important indexes to evaluate the normal operation of the dam. Complete crack image is an important means to improve the accuracy of evaluation. In view of the limitations of traditional Algorithms in underwater crack image stitching, we propose an underwater dam surface crack image stitching algorithm based on region division(ISA-RD). First of all, an image enhancement algorithm aiming at increasing the number of feature points is used. Secondly, we simplify the process of feature point selection and matching by relying on the features of multiple regions in the local crack image, and improve the matching accuracy by mining the close relationship between the matching of feature points and different regions. Finally, the high matching feature point pairs are used for image fusion. We take the crack image of the real scene as the research object. Compared with the classical image stitching algorithm, the feature point matching algorithm proposed in this paper improves the accuracy of feature point matching. Obviously, the image quality after stitching is improved.\",\"PeriodicalId\":297239,\"journal\":{\"name\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"363 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC53636.2021.9687041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水下大坝的表面裂缝是评价大坝是否正常运行的重要指标之一。完整的裂纹图像是提高评价精度的重要手段。针对传统水下裂缝图像拼接算法的局限性,提出了一种基于区域划分的水下大坝表面裂缝图像拼接算法(ISA-RD)。首先,采用以增加特征点数量为目标的图像增强算法。其次,依托局部裂纹图像中多个区域的特征,简化特征点选择与匹配过程,挖掘特征点与不同区域匹配之间的密切关系,提高匹配精度;最后,利用高匹配特征点对进行图像融合。我们以真实场景的裂纹图像为研究对象。与经典图像拼接算法相比,本文提出的特征点匹配算法提高了特征点匹配的精度。显然,拼接后的图像质量得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Stitching Algorithm Based on Region Division for Underwater Dam Crack Image
The surface crack of underwater dam is one of the important indexes to evaluate the normal operation of the dam. Complete crack image is an important means to improve the accuracy of evaluation. In view of the limitations of traditional Algorithms in underwater crack image stitching, we propose an underwater dam surface crack image stitching algorithm based on region division(ISA-RD). First of all, an image enhancement algorithm aiming at increasing the number of feature points is used. Secondly, we simplify the process of feature point selection and matching by relying on the features of multiple regions in the local crack image, and improve the matching accuracy by mining the close relationship between the matching of feature points and different regions. Finally, the high matching feature point pairs are used for image fusion. We take the crack image of the real scene as the research object. Compared with the classical image stitching algorithm, the feature point matching algorithm proposed in this paper improves the accuracy of feature point matching. Obviously, the image quality after stitching is improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信