Hausdorff离散化中拓扑连通与离散连通的对应关系

C. Ronse, L. Mazo, M. Tajine
{"title":"Hausdorff离散化中拓扑连通与离散连通的对应关系","authors":"C. Ronse, L. Mazo, M. Tajine","doi":"10.1515/mathm-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract We consider Hausdorff discretization from a metric space E to a discrete subspace D, which associates to a closed subset F of E any subset S of D minimizing the Hausdorff distance between F and S; this minimum distance, called the Hausdorff radius of F and written rH(F), is bounded by the resolution of D. We call a closed set F separated if it can be partitioned into two non-empty closed subsets F1 and F2 whose mutual distances have a strictly positive lower bound. Assuming some minimal topological properties of E and D (satisfied in ℝn and ℤn), we show that given a non-separated closed subset F of E, for any r > rH(F), every Hausdorff discretization of F is connected for the graph with edges linking pairs of points of D at distance at most 2r. When F is connected, this holds for r = rH(F), and its greatest Hausdorff discretization belongs to the partial connection generated by the traces on D of the balls of radius rH(F). However, when the closed set F is separated, the Hausdorff discretizations are disconnected whenever the resolution of D is small enough. In the particular case where E = ℝn and D = ℤn with norm-based distances, we generalize our previous results for n = 2. For a norm invariant under changes of signs of coordinates, the greatest Hausdorff discretization of a connected closed set is axially connected. For the so-called coordinate-homogeneous norms, which include the Lp norms, we give an adjacency graph for which all Hausdorff discretizations of a connected closed set are connected.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correspondence between Topological and Discrete Connectivities in Hausdorff Discretization\",\"authors\":\"C. Ronse, L. Mazo, M. Tajine\",\"doi\":\"10.1515/mathm-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider Hausdorff discretization from a metric space E to a discrete subspace D, which associates to a closed subset F of E any subset S of D minimizing the Hausdorff distance between F and S; this minimum distance, called the Hausdorff radius of F and written rH(F), is bounded by the resolution of D. We call a closed set F separated if it can be partitioned into two non-empty closed subsets F1 and F2 whose mutual distances have a strictly positive lower bound. Assuming some minimal topological properties of E and D (satisfied in ℝn and ℤn), we show that given a non-separated closed subset F of E, for any r > rH(F), every Hausdorff discretization of F is connected for the graph with edges linking pairs of points of D at distance at most 2r. When F is connected, this holds for r = rH(F), and its greatest Hausdorff discretization belongs to the partial connection generated by the traces on D of the balls of radius rH(F). However, when the closed set F is separated, the Hausdorff discretizations are disconnected whenever the resolution of D is small enough. In the particular case where E = ℝn and D = ℤn with norm-based distances, we generalize our previous results for n = 2. For a norm invariant under changes of signs of coordinates, the greatest Hausdorff discretization of a connected closed set is axially connected. For the so-called coordinate-homogeneous norms, which include the Lp norms, we give an adjacency graph for which all Hausdorff discretizations of a connected closed set are connected.\",\"PeriodicalId\":244328,\"journal\":{\"name\":\"Mathematical Morphology - Theory and Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Morphology - Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mathm-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑从度量空间E到离散子空间D的Hausdorff离散化,它将D的任意子集S关联到E的一个封闭子集F,使F与S之间的Hausdorff距离最小化;这个最小距离,称为F的Hausdorff半径,写为rH(F),由d的分辨率限定。我们称一个分离的闭集F,如果它可以被分割成两个非空的闭子集F1和F2,它们的相互距离有严格的正下界。假设E和D的一些极小拓扑性质(满足于∈n和∈n),我们证明了给定E的一个非分离闭子集F,对于任意r b> rH(F), F的每一个Hausdorff离散化对于边连接D的点对的图是连通的,距离不超过2r。当F连通时,对r = rH(F)成立,其最大的Hausdorff离散性属于半径为rH(F)的球在D上的迹线所产生的部分连接。然而,当封闭集F被分离时,只要D的分辨率足够小,Hausdorff离散就断开。在特殊情况下,当E =∈n和D =∈n具有基于范数的距离时,我们推广了之前n = 2的结果。对于坐标符号变化下的范数不变量,连通闭集的最大Hausdorff离散是轴向连通的。对于包含Lp范数的所谓坐标齐次范数,我们给出了一个邻接图,对于该邻接图,连通闭集的所有Hausdorff离散化都是连通的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correspondence between Topological and Discrete Connectivities in Hausdorff Discretization
Abstract We consider Hausdorff discretization from a metric space E to a discrete subspace D, which associates to a closed subset F of E any subset S of D minimizing the Hausdorff distance between F and S; this minimum distance, called the Hausdorff radius of F and written rH(F), is bounded by the resolution of D. We call a closed set F separated if it can be partitioned into two non-empty closed subsets F1 and F2 whose mutual distances have a strictly positive lower bound. Assuming some minimal topological properties of E and D (satisfied in ℝn and ℤn), we show that given a non-separated closed subset F of E, for any r > rH(F), every Hausdorff discretization of F is connected for the graph with edges linking pairs of points of D at distance at most 2r. When F is connected, this holds for r = rH(F), and its greatest Hausdorff discretization belongs to the partial connection generated by the traces on D of the balls of radius rH(F). However, when the closed set F is separated, the Hausdorff discretizations are disconnected whenever the resolution of D is small enough. In the particular case where E = ℝn and D = ℤn with norm-based distances, we generalize our previous results for n = 2. For a norm invariant under changes of signs of coordinates, the greatest Hausdorff discretization of a connected closed set is axially connected. For the so-called coordinate-homogeneous norms, which include the Lp norms, we give an adjacency graph for which all Hausdorff discretizations of a connected closed set are connected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信