{"title":"Hausdorff离散化中拓扑连通与离散连通的对应关系","authors":"C. Ronse, L. Mazo, M. Tajine","doi":"10.1515/mathm-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract We consider Hausdorff discretization from a metric space E to a discrete subspace D, which associates to a closed subset F of E any subset S of D minimizing the Hausdorff distance between F and S; this minimum distance, called the Hausdorff radius of F and written rH(F), is bounded by the resolution of D. We call a closed set F separated if it can be partitioned into two non-empty closed subsets F1 and F2 whose mutual distances have a strictly positive lower bound. Assuming some minimal topological properties of E and D (satisfied in ℝn and ℤn), we show that given a non-separated closed subset F of E, for any r > rH(F), every Hausdorff discretization of F is connected for the graph with edges linking pairs of points of D at distance at most 2r. When F is connected, this holds for r = rH(F), and its greatest Hausdorff discretization belongs to the partial connection generated by the traces on D of the balls of radius rH(F). However, when the closed set F is separated, the Hausdorff discretizations are disconnected whenever the resolution of D is small enough. In the particular case where E = ℝn and D = ℤn with norm-based distances, we generalize our previous results for n = 2. For a norm invariant under changes of signs of coordinates, the greatest Hausdorff discretization of a connected closed set is axially connected. For the so-called coordinate-homogeneous norms, which include the Lp norms, we give an adjacency graph for which all Hausdorff discretizations of a connected closed set are connected.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correspondence between Topological and Discrete Connectivities in Hausdorff Discretization\",\"authors\":\"C. Ronse, L. Mazo, M. Tajine\",\"doi\":\"10.1515/mathm-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider Hausdorff discretization from a metric space E to a discrete subspace D, which associates to a closed subset F of E any subset S of D minimizing the Hausdorff distance between F and S; this minimum distance, called the Hausdorff radius of F and written rH(F), is bounded by the resolution of D. We call a closed set F separated if it can be partitioned into two non-empty closed subsets F1 and F2 whose mutual distances have a strictly positive lower bound. Assuming some minimal topological properties of E and D (satisfied in ℝn and ℤn), we show that given a non-separated closed subset F of E, for any r > rH(F), every Hausdorff discretization of F is connected for the graph with edges linking pairs of points of D at distance at most 2r. When F is connected, this holds for r = rH(F), and its greatest Hausdorff discretization belongs to the partial connection generated by the traces on D of the balls of radius rH(F). However, when the closed set F is separated, the Hausdorff discretizations are disconnected whenever the resolution of D is small enough. In the particular case where E = ℝn and D = ℤn with norm-based distances, we generalize our previous results for n = 2. For a norm invariant under changes of signs of coordinates, the greatest Hausdorff discretization of a connected closed set is axially connected. For the so-called coordinate-homogeneous norms, which include the Lp norms, we give an adjacency graph for which all Hausdorff discretizations of a connected closed set are connected.\",\"PeriodicalId\":244328,\"journal\":{\"name\":\"Mathematical Morphology - Theory and Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Morphology - Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mathm-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Correspondence between Topological and Discrete Connectivities in Hausdorff Discretization
Abstract We consider Hausdorff discretization from a metric space E to a discrete subspace D, which associates to a closed subset F of E any subset S of D minimizing the Hausdorff distance between F and S; this minimum distance, called the Hausdorff radius of F and written rH(F), is bounded by the resolution of D. We call a closed set F separated if it can be partitioned into two non-empty closed subsets F1 and F2 whose mutual distances have a strictly positive lower bound. Assuming some minimal topological properties of E and D (satisfied in ℝn and ℤn), we show that given a non-separated closed subset F of E, for any r > rH(F), every Hausdorff discretization of F is connected for the graph with edges linking pairs of points of D at distance at most 2r. When F is connected, this holds for r = rH(F), and its greatest Hausdorff discretization belongs to the partial connection generated by the traces on D of the balls of radius rH(F). However, when the closed set F is separated, the Hausdorff discretizations are disconnected whenever the resolution of D is small enough. In the particular case where E = ℝn and D = ℤn with norm-based distances, we generalize our previous results for n = 2. For a norm invariant under changes of signs of coordinates, the greatest Hausdorff discretization of a connected closed set is axially connected. For the so-called coordinate-homogeneous norms, which include the Lp norms, we give an adjacency graph for which all Hausdorff discretizations of a connected closed set are connected.