在基于线性代数的稀疏图算法中引入流

P. Kogge, Neil A. Butcher, Brian A. Page
{"title":"在基于线性代数的稀疏图算法中引入流","authors":"P. Kogge, Neil A. Butcher, Brian A. Page","doi":"10.1109/HPCS48598.2019.9188143","DOIUrl":null,"url":null,"abstract":"GraphBLAS is a new package designed to provide a standard set of building blocks for graph algorithms based formally in the language of linear algebra. This paper suggests some extensions of the underlying math that would enhance GraphBLAS’ ability to stream updates into a computation without a bulk recomputation, and at greatly reduced computational complexity. The process is applied to several examples.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Introducing Streaming into Linear Algebra-based Sparse Graph Algorithms\",\"authors\":\"P. Kogge, Neil A. Butcher, Brian A. Page\",\"doi\":\"10.1109/HPCS48598.2019.9188143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GraphBLAS is a new package designed to provide a standard set of building blocks for graph algorithms based formally in the language of linear algebra. This paper suggests some extensions of the underlying math that would enhance GraphBLAS’ ability to stream updates into a computation without a bulk recomputation, and at greatly reduced computational complexity. The process is applied to several examples.\",\"PeriodicalId\":371856,\"journal\":{\"name\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS48598.2019.9188143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

GraphBLAS是一个新的软件包,旨在为基于线性代数语言的图形算法提供一套标准的构建块。本文建议对底层数学进行一些扩展,这些扩展将增强GraphBLAS将更新流传输到计算中的能力,而无需大量重新计算,并且大大降低了计算复杂性。该过程应用于几个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introducing Streaming into Linear Algebra-based Sparse Graph Algorithms
GraphBLAS is a new package designed to provide a standard set of building blocks for graph algorithms based formally in the language of linear algebra. This paper suggests some extensions of the underlying math that would enhance GraphBLAS’ ability to stream updates into a computation without a bulk recomputation, and at greatly reduced computational complexity. The process is applied to several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信