{"title":"分子通信干扰下配体受体的选择性信号检测","authors":"G. Muzio, M. Kuscu, Ö. Akan","doi":"10.1109/SPAWC.2018.8445876","DOIUrl":null,"url":null,"abstract":"Molecular Communications (MC) is a bio-inspired wireless communication technique that uses molecules as a means of information transfer among bio-nano devices. In this paper, we focus on the signal detection problem of MC receivers employing receptor molecules to infer the transmitted messages encoded into the concentration of molecules, i.e., ligands. We particularly consider a very common scenario in physiological conditions, where there is non-negligible concentration of interferer molecules in the channel, which have similar binding characteristics with the ligands, and thus, can bind to the receptors, causing substantial interference with the MC signal. We investigate three different maximum likelihood (ML) detection methods based on different observable parameters of the ligand-receptor binding mechanism, which are the instantaneous number of bound receptors and the amount of time the receptors stay unbound or bound within an observation time window. We carry out a comparative analysis to numerically evaluate the performance of the detection methods under different system settings.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Selective Signal Detection with Ligand Receptors Under Interference in Molecular Communications\",\"authors\":\"G. Muzio, M. Kuscu, Ö. Akan\",\"doi\":\"10.1109/SPAWC.2018.8445876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular Communications (MC) is a bio-inspired wireless communication technique that uses molecules as a means of information transfer among bio-nano devices. In this paper, we focus on the signal detection problem of MC receivers employing receptor molecules to infer the transmitted messages encoded into the concentration of molecules, i.e., ligands. We particularly consider a very common scenario in physiological conditions, where there is non-negligible concentration of interferer molecules in the channel, which have similar binding characteristics with the ligands, and thus, can bind to the receptors, causing substantial interference with the MC signal. We investigate three different maximum likelihood (ML) detection methods based on different observable parameters of the ligand-receptor binding mechanism, which are the instantaneous number of bound receptors and the amount of time the receptors stay unbound or bound within an observation time window. We carry out a comparative analysis to numerically evaluate the performance of the detection methods under different system settings.\",\"PeriodicalId\":240036,\"journal\":{\"name\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2018.8445876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Selective Signal Detection with Ligand Receptors Under Interference in Molecular Communications
Molecular Communications (MC) is a bio-inspired wireless communication technique that uses molecules as a means of information transfer among bio-nano devices. In this paper, we focus on the signal detection problem of MC receivers employing receptor molecules to infer the transmitted messages encoded into the concentration of molecules, i.e., ligands. We particularly consider a very common scenario in physiological conditions, where there is non-negligible concentration of interferer molecules in the channel, which have similar binding characteristics with the ligands, and thus, can bind to the receptors, causing substantial interference with the MC signal. We investigate three different maximum likelihood (ML) detection methods based on different observable parameters of the ligand-receptor binding mechanism, which are the instantaneous number of bound receptors and the amount of time the receptors stay unbound or bound within an observation time window. We carry out a comparative analysis to numerically evaluate the performance of the detection methods under different system settings.