寻找低秩近似的快速蒙特卡罗算法

A. Frieze, R. Kannan, S. Vempala
{"title":"寻找低秩近似的快速蒙特卡罗算法","authors":"A. Frieze, R. Kannan, S. Vempala","doi":"10.1109/SFCS.1998.743487","DOIUrl":null,"url":null,"abstract":"In several applications, the data consists of an m/spl times/n matrix A and it is of interest to find an approximation D of a specified rank k to A where, k is much smaller than m and n. Traditional methods like the Singular Value Decomposition (SVD) help us find the \"best\" such approximation. However, these methods take time polynomial in m, n which is often too prohibitive. In this paper, we develop an algorithm which is qualitatively faster provided we may sample the entries of the matrix according to a natural probability distribution. Indeed, in the applications such sampling is possible. Our main result is that we can find the description of a matrix D* of rank at most k so that /spl par/A-D*/spl par//sub F//spl les/min/D,rank(D)/spl les/k/spl par/A-D/spl par//sub F/+/spl epsiv//spl par/A/spl par//sub F/ holds with probability at least 1-/spl delta/. (For any matrix M, /spl par/M/spl par//sub F//sup 2/ denotes the sum of the squares of all the entries of M.) The algorithm takes time polynomial in k, 1//spl epsiv/, log(1//spl delta/) only, independent of m, n.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"774","resultStr":"{\"title\":\"Fast Monte-Carlo algorithms for finding low-rank approximations\",\"authors\":\"A. Frieze, R. Kannan, S. Vempala\",\"doi\":\"10.1109/SFCS.1998.743487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In several applications, the data consists of an m/spl times/n matrix A and it is of interest to find an approximation D of a specified rank k to A where, k is much smaller than m and n. Traditional methods like the Singular Value Decomposition (SVD) help us find the \\\"best\\\" such approximation. However, these methods take time polynomial in m, n which is often too prohibitive. In this paper, we develop an algorithm which is qualitatively faster provided we may sample the entries of the matrix according to a natural probability distribution. Indeed, in the applications such sampling is possible. Our main result is that we can find the description of a matrix D* of rank at most k so that /spl par/A-D*/spl par//sub F//spl les/min/D,rank(D)/spl les/k/spl par/A-D/spl par//sub F/+/spl epsiv//spl par/A/spl par//sub F/ holds with probability at least 1-/spl delta/. (For any matrix M, /spl par/M/spl par//sub F//sup 2/ denotes the sum of the squares of all the entries of M.) The algorithm takes time polynomial in k, 1//spl epsiv/, log(1//spl delta/) only, independent of m, n.\",\"PeriodicalId\":228145,\"journal\":{\"name\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"774\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1998.743487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 774

摘要

在一些应用中,数据由一个m/spl乘以/n的矩阵A组成,找到一个特定秩k到A的近似D是很有趣的,其中k远远小于m和n。传统的方法,如奇异值分解(SVD)帮助我们找到“最佳”这样的近似。然而,这些方法需要m的时间多项式,这通常是令人望而却步的。在本文中,我们开发了一种定性更快的算法,只要我们可以根据自然概率分布对矩阵的条目进行采样。实际上,在应用程序中,这样的采样是可能的。我们的主要结果是,我们可以找到一个矩阵D*的描述,使得/spl par/ a -D*/spl par//sub F//spl les/min/D,秩(D)/spl les/k/spl par/ a -D/spl par//sub F/+/spl epsiv//spl par/ a/ spl par//sub F/的概率至少为1-/spl delta/。(对于任意矩阵M, /spl par/M/spl par//sub F//sup 2/表示M中所有元素的平方和)该算法只需要k的时间多项式,1//spl δ /, log(1//spl δ /),与m, n无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Monte-Carlo algorithms for finding low-rank approximations
In several applications, the data consists of an m/spl times/n matrix A and it is of interest to find an approximation D of a specified rank k to A where, k is much smaller than m and n. Traditional methods like the Singular Value Decomposition (SVD) help us find the "best" such approximation. However, these methods take time polynomial in m, n which is often too prohibitive. In this paper, we develop an algorithm which is qualitatively faster provided we may sample the entries of the matrix according to a natural probability distribution. Indeed, in the applications such sampling is possible. Our main result is that we can find the description of a matrix D* of rank at most k so that /spl par/A-D*/spl par//sub F//spl les/min/D,rank(D)/spl les/k/spl par/A-D/spl par//sub F/+/spl epsiv//spl par/A/spl par//sub F/ holds with probability at least 1-/spl delta/. (For any matrix M, /spl par/M/spl par//sub F//sup 2/ denotes the sum of the squares of all the entries of M.) The algorithm takes time polynomial in k, 1//spl epsiv/, log(1//spl delta/) only, independent of m, n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信