Hermes:基于容器的无服务器计算的高效缓存管理

Bowen Yan, Heran Gao, Heng Wu, Wen-bo Zhang, Lei Hua, Tao Huang
{"title":"Hermes:基于容器的无服务器计算的高效缓存管理","authors":"Bowen Yan, Heran Gao, Heng Wu, Wen-bo Zhang, Lei Hua, Tao Huang","doi":"10.1145/3457913.3457925","DOIUrl":null,"url":null,"abstract":"Serverless computing systems are shifting towards shorter function durations and larger degrees of parallelism to eliminate intolerable latency. For container-based serverless computing, the state-of-the-art efforts fail to ensure low latency because on-demand container images reloading from remote storage can increase the data transmission rate and downgrades system performance. In this paper we propose Hermes with a two-level caching mechanism to reduce the latency and minimize data transmission rate when massive serverless workloads arrive. Hermes optimizes memory caching by persisting metadata cache and prolonging the lifetime of file cache to improve the cache efficiency of image files. Instead of reclaiming memory, Hermes uses disk caching to reduce memory usage, and gets a low data transmission rate by reloading from local disk cache. Experiment results show that Hermes can reduce 90% of the data transmission rate and improve the runtime performance of serverless workloads up to 5 × in a machine with 300 concurrent containers compared to state-of-the-art efforts.","PeriodicalId":194449,"journal":{"name":"Proceedings of the 12th Asia-Pacific Symposium on Internetware","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hermes: Efficient Cache Management for Container-based Serverless Computing\",\"authors\":\"Bowen Yan, Heran Gao, Heng Wu, Wen-bo Zhang, Lei Hua, Tao Huang\",\"doi\":\"10.1145/3457913.3457925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serverless computing systems are shifting towards shorter function durations and larger degrees of parallelism to eliminate intolerable latency. For container-based serverless computing, the state-of-the-art efforts fail to ensure low latency because on-demand container images reloading from remote storage can increase the data transmission rate and downgrades system performance. In this paper we propose Hermes with a two-level caching mechanism to reduce the latency and minimize data transmission rate when massive serverless workloads arrive. Hermes optimizes memory caching by persisting metadata cache and prolonging the lifetime of file cache to improve the cache efficiency of image files. Instead of reclaiming memory, Hermes uses disk caching to reduce memory usage, and gets a low data transmission rate by reloading from local disk cache. Experiment results show that Hermes can reduce 90% of the data transmission rate and improve the runtime performance of serverless workloads up to 5 × in a machine with 300 concurrent containers compared to state-of-the-art efforts.\",\"PeriodicalId\":194449,\"journal\":{\"name\":\"Proceedings of the 12th Asia-Pacific Symposium on Internetware\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th Asia-Pacific Symposium on Internetware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457913.3457925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th Asia-Pacific Symposium on Internetware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457913.3457925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

无服务器计算系统正在转向更短的功能持续时间和更大程度的并行性,以消除无法忍受的延迟。对于基于容器的无服务器计算,最先进的努力无法确保低延迟,因为从远程存储重新加载按需容器映像可能会增加数据传输速率并降低系统性能。在本文中,我们提出了具有两级缓存机制的Hermes,以减少大量无服务器工作负载到达时的延迟和最小化数据传输速率。Hermes通过持久化元数据缓存和延长文件缓存的生命周期来优化内存缓存,从而提高映像文件的缓存效率。Hermes不回收内存,而是使用磁盘缓存来减少内存使用,并通过从本地磁盘缓存重新加载获得较低的数据传输速率。实验结果表明,Hermes可以将数据传输速率降低90%,并将无服务器工作负载的运行时性能提高5倍,在一台具有300个并发容器的机器上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hermes: Efficient Cache Management for Container-based Serverless Computing
Serverless computing systems are shifting towards shorter function durations and larger degrees of parallelism to eliminate intolerable latency. For container-based serverless computing, the state-of-the-art efforts fail to ensure low latency because on-demand container images reloading from remote storage can increase the data transmission rate and downgrades system performance. In this paper we propose Hermes with a two-level caching mechanism to reduce the latency and minimize data transmission rate when massive serverless workloads arrive. Hermes optimizes memory caching by persisting metadata cache and prolonging the lifetime of file cache to improve the cache efficiency of image files. Instead of reclaiming memory, Hermes uses disk caching to reduce memory usage, and gets a low data transmission rate by reloading from local disk cache. Experiment results show that Hermes can reduce 90% of the data transmission rate and improve the runtime performance of serverless workloads up to 5 × in a machine with 300 concurrent containers compared to state-of-the-art efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信