Bogdan Niemoczynski, S. Biswas, J. Kollmer, F. Ferrese
{"title":"四轴飞行器舰队的悬停同步","authors":"Bogdan Niemoczynski, S. Biswas, J. Kollmer, F. Ferrese","doi":"10.1109/ISRCS.2014.6900102","DOIUrl":null,"url":null,"abstract":"Multi-agent concepts are applied to a fleet of quadcopters for a synchronized hovering flight. Each quadcopter system is represented by a simple dynamic model which is linearized with respect to a hovering state. A two stage controller is proposed consisting of a local feedback loop for stabilization of individual platforms, and a global system-level feedback loop for synchronization. It is shown that with appropriate feedback, the fleet maintains stability of hovering formation. It is also shown that the controller maintains collective stability of the fleet in the event of failure of individual quadcopters. Simulation results are presented showing synchronized hovering in the horizontal and vertical planes.","PeriodicalId":205922,"journal":{"name":"2014 7th International Symposium on Resilient Control Systems (ISRCS)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hovering synchronization of a fleet of quadcopters\",\"authors\":\"Bogdan Niemoczynski, S. Biswas, J. Kollmer, F. Ferrese\",\"doi\":\"10.1109/ISRCS.2014.6900102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-agent concepts are applied to a fleet of quadcopters for a synchronized hovering flight. Each quadcopter system is represented by a simple dynamic model which is linearized with respect to a hovering state. A two stage controller is proposed consisting of a local feedback loop for stabilization of individual platforms, and a global system-level feedback loop for synchronization. It is shown that with appropriate feedback, the fleet maintains stability of hovering formation. It is also shown that the controller maintains collective stability of the fleet in the event of failure of individual quadcopters. Simulation results are presented showing synchronized hovering in the horizontal and vertical planes.\",\"PeriodicalId\":205922,\"journal\":{\"name\":\"2014 7th International Symposium on Resilient Control Systems (ISRCS)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 7th International Symposium on Resilient Control Systems (ISRCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISRCS.2014.6900102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Symposium on Resilient Control Systems (ISRCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRCS.2014.6900102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hovering synchronization of a fleet of quadcopters
Multi-agent concepts are applied to a fleet of quadcopters for a synchronized hovering flight. Each quadcopter system is represented by a simple dynamic model which is linearized with respect to a hovering state. A two stage controller is proposed consisting of a local feedback loop for stabilization of individual platforms, and a global system-level feedback loop for synchronization. It is shown that with appropriate feedback, the fleet maintains stability of hovering formation. It is also shown that the controller maintains collective stability of the fleet in the event of failure of individual quadcopters. Simulation results are presented showing synchronized hovering in the horizontal and vertical planes.