ML回归算法在超市销售预测中的性能比较

Balaji Jayakrishnan, Gunja Pandey, Nitika Verma, Ritika Sarkar, Muskan Dhingra, Palak D. Tandel
{"title":"ML回归算法在超市销售预测中的性能比较","authors":"Balaji Jayakrishnan, Gunja Pandey, Nitika Verma, Ritika Sarkar, Muskan Dhingra, Palak D. Tandel","doi":"10.52458/978-93-91842-08-6-16","DOIUrl":null,"url":null,"abstract":"The ability of regression algorithms to reliably identify the influencing factors of any data on the desired result is irrefutable. With the available techniques, we can investigate the main reason behind the influence of distinguishing factors on a supermarket’s sales. We’ll be building a machine learning model that can accurately predict the sales in millions of units for a given product. Our work will investigate the ability of some of the most popular ML regression algorithms to provide this information. Seven regression algorithms will be trained using data collected through supermarket sales. To gain key insights, the algorithms are compared along two axes, prediction quality and usefulness of output. This class of algorithms produces models that can be used to predict performance in sales and indicate the sources of potential market problems and quantify the potential gain.","PeriodicalId":247665,"journal":{"name":"SCRS Conference Proceedings on Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Comparison of ML Regression Algorithms in Predicting Supermarket Sales\",\"authors\":\"Balaji Jayakrishnan, Gunja Pandey, Nitika Verma, Ritika Sarkar, Muskan Dhingra, Palak D. Tandel\",\"doi\":\"10.52458/978-93-91842-08-6-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability of regression algorithms to reliably identify the influencing factors of any data on the desired result is irrefutable. With the available techniques, we can investigate the main reason behind the influence of distinguishing factors on a supermarket’s sales. We’ll be building a machine learning model that can accurately predict the sales in millions of units for a given product. Our work will investigate the ability of some of the most popular ML regression algorithms to provide this information. Seven regression algorithms will be trained using data collected through supermarket sales. To gain key insights, the algorithms are compared along two axes, prediction quality and usefulness of output. This class of algorithms produces models that can be used to predict performance in sales and indicate the sources of potential market problems and quantify the potential gain.\",\"PeriodicalId\":247665,\"journal\":{\"name\":\"SCRS Conference Proceedings on Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SCRS Conference Proceedings on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52458/978-93-91842-08-6-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCRS Conference Proceedings on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52458/978-93-91842-08-6-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回归算法可靠地识别任何数据对预期结果的影响因素的能力是无可辩驳的。利用现有的技术,我们可以研究区分因素影响超市销售的主要原因。我们将建立一个机器学习模型,它可以准确地预测给定产品的销量,以百万计。我们的工作将研究一些最流行的ML回归算法提供这些信息的能力。将使用通过超市销售收集的数据训练七种回归算法。为了获得关键的见解,算法沿着两个轴进行比较,预测质量和输出的有用性。这类算法产生的模型可用于预测销售业绩,指出潜在市场问题的来源,并量化潜在收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Comparison of ML Regression Algorithms in Predicting Supermarket Sales
The ability of regression algorithms to reliably identify the influencing factors of any data on the desired result is irrefutable. With the available techniques, we can investigate the main reason behind the influence of distinguishing factors on a supermarket’s sales. We’ll be building a machine learning model that can accurately predict the sales in millions of units for a given product. Our work will investigate the ability of some of the most popular ML regression algorithms to provide this information. Seven regression algorithms will be trained using data collected through supermarket sales. To gain key insights, the algorithms are compared along two axes, prediction quality and usefulness of output. This class of algorithms produces models that can be used to predict performance in sales and indicate the sources of potential market problems and quantify the potential gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信