参数和动态最小生成树

P. Agarwal, D. Eppstein, L. Guibas, M. Henzinger
{"title":"参数和动态最小生成树","authors":"P. Agarwal, D. Eppstein, L. Guibas, M. Henzinger","doi":"10.1109/SFCS.1998.743510","DOIUrl":null,"url":null,"abstract":"We consider the parametric minimum spanning tree problem, in which we are given a graph with edge weights that are linear functions of a parameter /spl lambda/ and wish to compute the sequence of minimum spanning trees generated as /spl lambda/ varies. We also consider the kinetic minimum spanning tree problem, in which /spl lambda/ represents time and the graph is subject in addition to changes such as edge insertions, deletions, and modifications of the weight functions as time progresses. We solve both problems in time O(n/sup 2/3/log/sup 4/3/) per combinatorial change in the tree (or randomized O(n/sup 2/3/log/sup 4/3/ n) per change). Our time bounds reduce to O(n/sup 1/2/log/sup 3/2/ n) per change (O(n/sup 1/2/log n) randomized) for planar graphs or other minor-closed families of graphs, and O(n/sup 1/4/log/sup 3/2/ n) per change (O(n/sup 1/4/ log n) randomized) for planar graphs with weight changes but no insertions or deletions.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Parametric and kinetic minimum spanning trees\",\"authors\":\"P. Agarwal, D. Eppstein, L. Guibas, M. Henzinger\",\"doi\":\"10.1109/SFCS.1998.743510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the parametric minimum spanning tree problem, in which we are given a graph with edge weights that are linear functions of a parameter /spl lambda/ and wish to compute the sequence of minimum spanning trees generated as /spl lambda/ varies. We also consider the kinetic minimum spanning tree problem, in which /spl lambda/ represents time and the graph is subject in addition to changes such as edge insertions, deletions, and modifications of the weight functions as time progresses. We solve both problems in time O(n/sup 2/3/log/sup 4/3/) per combinatorial change in the tree (or randomized O(n/sup 2/3/log/sup 4/3/ n) per change). Our time bounds reduce to O(n/sup 1/2/log/sup 3/2/ n) per change (O(n/sup 1/2/log n) randomized) for planar graphs or other minor-closed families of graphs, and O(n/sup 1/4/log/sup 3/2/ n) per change (O(n/sup 1/4/ log n) randomized) for planar graphs with weight changes but no insertions or deletions.\",\"PeriodicalId\":228145,\"journal\":{\"name\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1998.743510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

我们考虑参数最小生成树问题,在这个问题中,我们给定一个图,其边权是参数/spl lambda/的线性函数,并希望计算当/spl lambda/变化时生成的最小生成树序列。我们还考虑了动态最小生成树问题,其中/spl lambda/表示时间,并且随着时间的推移,图还受到诸如边插入,删除和权函数修改等变化的影响。我们解决这两个问题的时间都是O(n/sup 2/3/log/sup 4/3/)每次树的组合变化(或者随机化的O(n/sup 2/3/log/sup 4/3/ n)每次变化)。我们的时间界限减少到O(n/sup 1/2/log/sup 3/2/ n)每次变化(O(n/sup 1/2/log n)随机化)对于平面图或其他小封闭图族,以及O(n/sup 1/4/log/sup 3/2/ n)每次变化(O(n/sup 1/4/log n随机化)对于具有权重变化但没有插入或删除的平面图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric and kinetic minimum spanning trees
We consider the parametric minimum spanning tree problem, in which we are given a graph with edge weights that are linear functions of a parameter /spl lambda/ and wish to compute the sequence of minimum spanning trees generated as /spl lambda/ varies. We also consider the kinetic minimum spanning tree problem, in which /spl lambda/ represents time and the graph is subject in addition to changes such as edge insertions, deletions, and modifications of the weight functions as time progresses. We solve both problems in time O(n/sup 2/3/log/sup 4/3/) per combinatorial change in the tree (or randomized O(n/sup 2/3/log/sup 4/3/ n) per change). Our time bounds reduce to O(n/sup 1/2/log/sup 3/2/ n) per change (O(n/sup 1/2/log n) randomized) for planar graphs or other minor-closed families of graphs, and O(n/sup 1/4/log/sup 3/2/ n) per change (O(n/sup 1/4/ log n) randomized) for planar graphs with weight changes but no insertions or deletions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信