{"title":"2-(边)连通图的3点彩虹索引","authors":"Yingbin Ma, Wenhan Zhu","doi":"10.1142/s0219265921500341","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a vertex-colored graph. For a vertex set [Formula: see text] of at least two vertices, a tree [Formula: see text] that connects [Formula: see text] in [Formula: see text] is vertex-rainbow if no two vertices of [Formula: see text] have the same color, such a tree is called a vertex-rainbow [Formula: see text]-tree or a vertex-rainbow tree connecting [Formula: see text]. Let [Formula: see text] be a fixed integer with [Formula: see text], [Formula: see text] is said to be vertex-rainbow [Formula: see text]-tree connected if every [Formula: see text]-subset [Formula: see text] of [Formula: see text] has a vertex-rainbow [Formula: see text]-tree. The [Formula: see text]-vertex-rainbow index [Formula: see text] of a graph [Formula: see text] is the minimum number of colors are needed in order to make [Formula: see text] vertex-rainbow [Formula: see text]-tree connected. In this paper, we focus on [Formula: see text]. When [Formula: see text] is [Formula: see text]-connected or [Formula: see text]-edge-connected, we provide a sharp upper bound for [Formula: see text], respectively, and determine the graphs [Formula: see text], where [Formula: see text] reaches the upper bound.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 3-Vertex-Rainbow Index of 2-(Edge) Connected Graphs\",\"authors\":\"Yingbin Ma, Wenhan Zhu\",\"doi\":\"10.1142/s0219265921500341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a vertex-colored graph. For a vertex set [Formula: see text] of at least two vertices, a tree [Formula: see text] that connects [Formula: see text] in [Formula: see text] is vertex-rainbow if no two vertices of [Formula: see text] have the same color, such a tree is called a vertex-rainbow [Formula: see text]-tree or a vertex-rainbow tree connecting [Formula: see text]. Let [Formula: see text] be a fixed integer with [Formula: see text], [Formula: see text] is said to be vertex-rainbow [Formula: see text]-tree connected if every [Formula: see text]-subset [Formula: see text] of [Formula: see text] has a vertex-rainbow [Formula: see text]-tree. The [Formula: see text]-vertex-rainbow index [Formula: see text] of a graph [Formula: see text] is the minimum number of colors are needed in order to make [Formula: see text] vertex-rainbow [Formula: see text]-tree connected. In this paper, we focus on [Formula: see text]. When [Formula: see text] is [Formula: see text]-connected or [Formula: see text]-edge-connected, we provide a sharp upper bound for [Formula: see text], respectively, and determine the graphs [Formula: see text], where [Formula: see text] reaches the upper bound.\",\"PeriodicalId\":153590,\"journal\":{\"name\":\"J. Interconnect. Networks\",\"volume\":\"272 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Interconnect. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265921500341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265921500341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设[公式:见文本]为顶点颜色的图形。对于至少有两个顶点的顶点集[公式:见文],连接[公式:见文]中的[公式:见文]的树[公式:见文]是顶点彩虹,如果[公式:见文]中没有两个顶点具有相同的颜色,这样的树称为顶点彩虹[公式:见文]-树或连接[公式:见文]的顶点彩虹树。设[公式:见文]为与[公式:见文]的固定整数,如果[公式:见文]的每个[公式:见文]的[公式:见文]子集[公式:见文]都有一个顶点-彩虹[公式:见文]-树,则[公式:见文]被称为顶点-彩虹[公式:见文]-树连接。图[公式:见文]的[公式:见文]-顶点-彩虹索引[公式:见文]是使[公式:见文]顶点-彩虹[公式:见文]-树连通所需的最小颜色数。在本文中,我们主要关注[公式:见文本]。当[Formula: see text]为[Formula: see text]-connected或[Formula: see text]-edge-connected时,我们分别为[Formula: see text]提供一个锐利的上界,并确定图[Formula: see text],其中[Formula: see text]达到上界。
The 3-Vertex-Rainbow Index of 2-(Edge) Connected Graphs
Let [Formula: see text] be a vertex-colored graph. For a vertex set [Formula: see text] of at least two vertices, a tree [Formula: see text] that connects [Formula: see text] in [Formula: see text] is vertex-rainbow if no two vertices of [Formula: see text] have the same color, such a tree is called a vertex-rainbow [Formula: see text]-tree or a vertex-rainbow tree connecting [Formula: see text]. Let [Formula: see text] be a fixed integer with [Formula: see text], [Formula: see text] is said to be vertex-rainbow [Formula: see text]-tree connected if every [Formula: see text]-subset [Formula: see text] of [Formula: see text] has a vertex-rainbow [Formula: see text]-tree. The [Formula: see text]-vertex-rainbow index [Formula: see text] of a graph [Formula: see text] is the minimum number of colors are needed in order to make [Formula: see text] vertex-rainbow [Formula: see text]-tree connected. In this paper, we focus on [Formula: see text]. When [Formula: see text] is [Formula: see text]-connected or [Formula: see text]-edge-connected, we provide a sharp upper bound for [Formula: see text], respectively, and determine the graphs [Formula: see text], where [Formula: see text] reaches the upper bound.