弹性膜与不可压缩流体相互作用问题的无条件稳定半隐式CutFEM

Kyle G. Dunn, R. Lui, M. Sarkis
{"title":"弹性膜与不可压缩流体相互作用问题的无条件稳定半隐式CutFEM","authors":"Kyle G. Dunn, R. Lui, M. Sarkis","doi":"10.1553/ETNA_VOL54S296","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a finite element method for the Stokes equations with a massless immersed membrane. This membrane applies normal and tangential forces affecting the velocity and pressure of the fluid. Additionally, the points representing this membrane move with the local fluid velocity. We design and implement a high-accuracy cut finite element method (CutFEM) which enables the use of a structured mesh that is not aligned with the immersed membrane and then we formulate a time discretization that yields an unconditionally energy stable scheme. We prove that the stability is not restricted by the parameter choices that constrained previous finite element immersed boundary methods and illustrate the theoretical results with numerical simulations.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An unconditionally stable semi-implicit CutFEM for an interaction problem between an elastic membrane and an incompressible fluid\",\"authors\":\"Kyle G. Dunn, R. Lui, M. Sarkis\",\"doi\":\"10.1553/ETNA_VOL54S296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a finite element method for the Stokes equations with a massless immersed membrane. This membrane applies normal and tangential forces affecting the velocity and pressure of the fluid. Additionally, the points representing this membrane move with the local fluid velocity. We design and implement a high-accuracy cut finite element method (CutFEM) which enables the use of a structured mesh that is not aligned with the immersed membrane and then we formulate a time discretization that yields an unconditionally energy stable scheme. We prove that the stability is not restricted by the parameter choices that constrained previous finite element immersed boundary methods and illustrate the theoretical results with numerical simulations.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/ETNA_VOL54S296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL54S296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了含无质量浸入膜的Stokes方程的有限元解法。该膜施加影响流体速度和压力的法向和切向力。此外,代表该膜的点随局部流体速度移动。我们设计并实现了一种高精度切割有限元方法(CutFEM),该方法可以使用与浸入膜不对齐的结构化网格,然后我们制定了时间离散化,从而产生无条件的能量稳定方案。证明了有限元浸入边界法的稳定性不受参数选择的限制,并用数值模拟说明了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An unconditionally stable semi-implicit CutFEM for an interaction problem between an elastic membrane and an incompressible fluid
In this paper we introduce a finite element method for the Stokes equations with a massless immersed membrane. This membrane applies normal and tangential forces affecting the velocity and pressure of the fluid. Additionally, the points representing this membrane move with the local fluid velocity. We design and implement a high-accuracy cut finite element method (CutFEM) which enables the use of a structured mesh that is not aligned with the immersed membrane and then we formulate a time discretization that yields an unconditionally energy stable scheme. We prove that the stability is not restricted by the parameter choices that constrained previous finite element immersed boundary methods and illustrate the theoretical results with numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信