用无监督hopfield神经网络分类器分割痰色图像的聚类距离度量比较

R. Sammouda, B. Youssef
{"title":"用无监督hopfield神经网络分类器分割痰色图像的聚类距离度量比较","authors":"R. Sammouda, B. Youssef","doi":"10.1109/GSCIT.2014.6970130","DOIUrl":null,"url":null,"abstract":"Unsupervised Hopfield Neural Network classifier (UHNNC) is an operational process appropriate for the segmentation of different type of medical and natural images. Its efficiency subsidizes not only to its start from a random initialization for the assignment of each pixel to only and only one cluster but also to its convergence to an advanced optimal solution in a pre-specified number of iterations. In this paper, we present a study of the distance type effect on the segmentation result using UHNNC. We have used a database of 1000 sputum color images prepared to be used in a screening process for lung cancer diagnosis. A quantitative comparison between the results obtained using the Euclidian and the Manhattan distance or city block distance showed that the former gives better classification or segmentation to the pixels of the different cells present in the sputum color images.","PeriodicalId":270622,"journal":{"name":"2014 Global Summit on Computer & Information Technology (GSCIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A comparison of cluster distance metrics for the segmentation of sputum color image using unsupervised hopfield neural network classifier\",\"authors\":\"R. Sammouda, B. Youssef\",\"doi\":\"10.1109/GSCIT.2014.6970130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised Hopfield Neural Network classifier (UHNNC) is an operational process appropriate for the segmentation of different type of medical and natural images. Its efficiency subsidizes not only to its start from a random initialization for the assignment of each pixel to only and only one cluster but also to its convergence to an advanced optimal solution in a pre-specified number of iterations. In this paper, we present a study of the distance type effect on the segmentation result using UHNNC. We have used a database of 1000 sputum color images prepared to be used in a screening process for lung cancer diagnosis. A quantitative comparison between the results obtained using the Euclidian and the Manhattan distance or city block distance showed that the former gives better classification or segmentation to the pixels of the different cells present in the sputum color images.\",\"PeriodicalId\":270622,\"journal\":{\"name\":\"2014 Global Summit on Computer & Information Technology (GSCIT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Global Summit on Computer & Information Technology (GSCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSCIT.2014.6970130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Global Summit on Computer & Information Technology (GSCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSCIT.2014.6970130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

无监督Hopfield神经网络分类器(Unsupervised Hopfield Neural Network classifier, UHNNC)是一种适用于不同类型医学和自然图像分割的操作过程。它的效率不仅在于它从随机初始化开始将每个像素只分配给一个簇,而且还在于它在预先指定的迭代次数中收敛到高级最优解。本文研究了距离类型对UHNNC分割结果的影响。我们使用了一个包含1000张痰彩色图像的数据库,准备用于肺癌诊断的筛查过程。定量比较欧几里得距离与曼哈顿距离或城市街区距离得到的结果表明,前者对痰色图像中存在的不同细胞的像素进行了更好的分类或分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of cluster distance metrics for the segmentation of sputum color image using unsupervised hopfield neural network classifier
Unsupervised Hopfield Neural Network classifier (UHNNC) is an operational process appropriate for the segmentation of different type of medical and natural images. Its efficiency subsidizes not only to its start from a random initialization for the assignment of each pixel to only and only one cluster but also to its convergence to an advanced optimal solution in a pre-specified number of iterations. In this paper, we present a study of the distance type effect on the segmentation result using UHNNC. We have used a database of 1000 sputum color images prepared to be used in a screening process for lung cancer diagnosis. A quantitative comparison between the results obtained using the Euclidian and the Manhattan distance or city block distance showed that the former gives better classification or segmentation to the pixels of the different cells present in the sputum color images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信