{"title":"双曲酉群的结构II: e -正规子群的分类","authors":"R. Preusser","doi":"10.1142/S1005386717000128","DOIUrl":null,"url":null,"abstract":"This paper proves the sandwich classification conjecture for subgroups of an even dimensional hyperbolic unitary group $U_{2n}(R,\\Lambda)$ which are normalized by the elementary subgroup $EU_{2n}(R,\\Lambda)$, under the condition that $R$ is a quasi-finite ring with involution, i.e a direct limit of module finite rings with involution, and $n\\geq 3$.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Structure of Hyperbolic Unitary Groups II: Classification of E-normal Subgroups\",\"authors\":\"R. Preusser\",\"doi\":\"10.1142/S1005386717000128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proves the sandwich classification conjecture for subgroups of an even dimensional hyperbolic unitary group $U_{2n}(R,\\\\Lambda)$ which are normalized by the elementary subgroup $EU_{2n}(R,\\\\Lambda)$, under the condition that $R$ is a quasi-finite ring with involution, i.e a direct limit of module finite rings with involution, and $n\\\\geq 3$.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1005386717000128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1005386717000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure of Hyperbolic Unitary Groups II: Classification of E-normal Subgroups
This paper proves the sandwich classification conjecture for subgroups of an even dimensional hyperbolic unitary group $U_{2n}(R,\Lambda)$ which are normalized by the elementary subgroup $EU_{2n}(R,\Lambda)$, under the condition that $R$ is a quasi-finite ring with involution, i.e a direct limit of module finite rings with involution, and $n\geq 3$.