Shekhar Srikantaiah, R. Das, Asit K. Mishra, C. Das, M. Kandemir
{"title":"芯片多处理器中集成处理器缓存分区的一个案例","authors":"Shekhar Srikantaiah, R. Das, Asit K. Mishra, C. Das, M. Kandemir","doi":"10.1145/1654059.1654066","DOIUrl":null,"url":null,"abstract":"Existing cache partitioning schemes are designed in a manner oblivious to the implicit processor partitioning enforced by the operating system. This paper examines an operating system directed integrated processor-cache partitioning scheme that partitions both the available processors and the shared cache in a chip multiprocessor among different multi-threaded applications. Extensive simulations using a set of multiprogrammed workloads show that our integrated processor-cache partitioning scheme facilitates achieving better performance isolation as compared to state of the art hardware/software based solutions. Specifically, our integrated processor-cache partitioning approach performs, on an average, 20.83% and 14.14% better than equal partitioning and the implicit partitioning enforced by the underlying operating system, respectively, on the fair speedup metric on an 8 core system. We also compare our approach to processor partitioning alone and a state-of-the-art cache partitioning scheme and our scheme fares 8.21% and 9.19% better than these schemes on a 16 core system.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"244 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A case for integrated processor-cache partitioning in chip multiprocessors\",\"authors\":\"Shekhar Srikantaiah, R. Das, Asit K. Mishra, C. Das, M. Kandemir\",\"doi\":\"10.1145/1654059.1654066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing cache partitioning schemes are designed in a manner oblivious to the implicit processor partitioning enforced by the operating system. This paper examines an operating system directed integrated processor-cache partitioning scheme that partitions both the available processors and the shared cache in a chip multiprocessor among different multi-threaded applications. Extensive simulations using a set of multiprogrammed workloads show that our integrated processor-cache partitioning scheme facilitates achieving better performance isolation as compared to state of the art hardware/software based solutions. Specifically, our integrated processor-cache partitioning approach performs, on an average, 20.83% and 14.14% better than equal partitioning and the implicit partitioning enforced by the underlying operating system, respectively, on the fair speedup metric on an 8 core system. We also compare our approach to processor partitioning alone and a state-of-the-art cache partitioning scheme and our scheme fares 8.21% and 9.19% better than these schemes on a 16 core system.\",\"PeriodicalId\":371415,\"journal\":{\"name\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"volume\":\"244 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1654059.1654066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A case for integrated processor-cache partitioning in chip multiprocessors
Existing cache partitioning schemes are designed in a manner oblivious to the implicit processor partitioning enforced by the operating system. This paper examines an operating system directed integrated processor-cache partitioning scheme that partitions both the available processors and the shared cache in a chip multiprocessor among different multi-threaded applications. Extensive simulations using a set of multiprogrammed workloads show that our integrated processor-cache partitioning scheme facilitates achieving better performance isolation as compared to state of the art hardware/software based solutions. Specifically, our integrated processor-cache partitioning approach performs, on an average, 20.83% and 14.14% better than equal partitioning and the implicit partitioning enforced by the underlying operating system, respectively, on the fair speedup metric on an 8 core system. We also compare our approach to processor partitioning alone and a state-of-the-art cache partitioning scheme and our scheme fares 8.21% and 9.19% better than these schemes on a 16 core system.