{"title":"生物医学无线应用的植入式整流天线系统","authors":"Shuoliang Ding, S. Koulouridis, L. Pichon","doi":"10.1109/WPTC45513.2019.9055687","DOIUrl":null,"url":null,"abstract":"In this paper, a complete RF to DC wireless power transmission implantable rectenna system is presented. For simplicity, an external half-wave dipole at Industrial, Scientific and Medical bands (ISM 902.8-928 MHz) is selected as an energy emitter from outside human body. An embedded circular dipole antenna receives the energy and then converts it to DC power by a rectifying circuit. The structure of the system is discussed in details. Finally, the rectifying efficiency and the global system's efficiency are examined for different external antenna to human body distances, different embedded depth and various levels of circuit's input power.","PeriodicalId":148719,"journal":{"name":"2019 IEEE Wireless Power Transfer Conference (WPTC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implantable rectenna system for biomedical wireless applications\",\"authors\":\"Shuoliang Ding, S. Koulouridis, L. Pichon\",\"doi\":\"10.1109/WPTC45513.2019.9055687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a complete RF to DC wireless power transmission implantable rectenna system is presented. For simplicity, an external half-wave dipole at Industrial, Scientific and Medical bands (ISM 902.8-928 MHz) is selected as an energy emitter from outside human body. An embedded circular dipole antenna receives the energy and then converts it to DC power by a rectifying circuit. The structure of the system is discussed in details. Finally, the rectifying efficiency and the global system's efficiency are examined for different external antenna to human body distances, different embedded depth and various levels of circuit's input power.\",\"PeriodicalId\":148719,\"journal\":{\"name\":\"2019 IEEE Wireless Power Transfer Conference (WPTC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Wireless Power Transfer Conference (WPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPTC45513.2019.9055687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Power Transfer Conference (WPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPTC45513.2019.9055687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implantable rectenna system for biomedical wireless applications
In this paper, a complete RF to DC wireless power transmission implantable rectenna system is presented. For simplicity, an external half-wave dipole at Industrial, Scientific and Medical bands (ISM 902.8-928 MHz) is selected as an energy emitter from outside human body. An embedded circular dipole antenna receives the energy and then converts it to DC power by a rectifying circuit. The structure of the system is discussed in details. Finally, the rectifying efficiency and the global system's efficiency are examined for different external antenna to human body distances, different embedded depth and various levels of circuit's input power.