Ghostfinger:一个全新的全计算指尖控制器平台

Staas de Jong
{"title":"Ghostfinger:一个全新的全计算指尖控制器平台","authors":"Staas de Jong","doi":"10.5281/zenodo.1176292","DOIUrl":null,"url":null,"abstract":"We present Ghostfinger, a technology for highly dynamic up/down fingertip haptics and control. The overall user experience offered by the technology can be described as that of tangibly and audibly interacting with a small hologram. More specifically, Ghostfinger implements automatic visualization of the dynamic instantiation/parametrization of algorithmic primitives that together determine the current haptic conditions for fingertip action. Some aspects of this visualization are visuospatial: A floating see-through cursor provides real-time, to-scale display of the fingerpad transducer, as it is being moved by the user. Simultaneously, each haptic primitive instance is represented by a floating block shape, type-colored, variably transparent, and possibly overlapping with other such block shapes. Further aspects of visualization are symbolic: Each instance is also represented by a type symbol, lighting up within a grid if the instance is providing output to the user. We discuss the system's user interface, programming interface, and potential applications. This is done from a general perspective that articulates and emphasizes the uniquely enabling role of the principle of computation in the implementation of new forms of instrumental control of musical sound. Beyond the currently presented technology, this also reflects more broadly on the role of Digital Musical Instruments (DMIs) in NIME.","PeriodicalId":161317,"journal":{"name":"New Interfaces for Musical Expression","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ghostfinger: a novel platform for fully computational fingertip controllers\",\"authors\":\"Staas de Jong\",\"doi\":\"10.5281/zenodo.1176292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Ghostfinger, a technology for highly dynamic up/down fingertip haptics and control. The overall user experience offered by the technology can be described as that of tangibly and audibly interacting with a small hologram. More specifically, Ghostfinger implements automatic visualization of the dynamic instantiation/parametrization of algorithmic primitives that together determine the current haptic conditions for fingertip action. Some aspects of this visualization are visuospatial: A floating see-through cursor provides real-time, to-scale display of the fingerpad transducer, as it is being moved by the user. Simultaneously, each haptic primitive instance is represented by a floating block shape, type-colored, variably transparent, and possibly overlapping with other such block shapes. Further aspects of visualization are symbolic: Each instance is also represented by a type symbol, lighting up within a grid if the instance is providing output to the user. We discuss the system's user interface, programming interface, and potential applications. This is done from a general perspective that articulates and emphasizes the uniquely enabling role of the principle of computation in the implementation of new forms of instrumental control of musical sound. Beyond the currently presented technology, this also reflects more broadly on the role of Digital Musical Instruments (DMIs) in NIME.\",\"PeriodicalId\":161317,\"journal\":{\"name\":\"New Interfaces for Musical Expression\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Interfaces for Musical Expression\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/zenodo.1176292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Interfaces for Musical Expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/zenodo.1176292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了Ghostfinger,一种高度动态的上下指尖触觉和控制技术。该技术提供的整体用户体验可以被描述为与一个小全息图进行有形和可听的交互。更具体地说,Ghostfinger实现了算法原语的动态实例化/参数化的自动可视化,这些原语共同决定了指尖动作的当前触觉条件。这种可视化的一些方面是视觉空间的:当用户移动手指板传感器时,浮动的透明光标提供实时的、按比例的显示。同时,每个触觉原始实例都由浮动块形状表示,类型颜色,可变透明,并可能与其他此类块形状重叠。可视化的进一步方面是符号:每个实例也由类型符号表示,如果实例向用户提供输出,则在网格中亮起。我们讨论了系统的用户界面、编程界面和潜在的应用。这是从一个一般的角度来阐述和强调计算原理在实现新形式的乐器控制音乐声音中的独特作用。除了目前呈现的技术之外,这也更广泛地反映了数字乐器(dmi)在NIME中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ghostfinger: a novel platform for fully computational fingertip controllers
We present Ghostfinger, a technology for highly dynamic up/down fingertip haptics and control. The overall user experience offered by the technology can be described as that of tangibly and audibly interacting with a small hologram. More specifically, Ghostfinger implements automatic visualization of the dynamic instantiation/parametrization of algorithmic primitives that together determine the current haptic conditions for fingertip action. Some aspects of this visualization are visuospatial: A floating see-through cursor provides real-time, to-scale display of the fingerpad transducer, as it is being moved by the user. Simultaneously, each haptic primitive instance is represented by a floating block shape, type-colored, variably transparent, and possibly overlapping with other such block shapes. Further aspects of visualization are symbolic: Each instance is also represented by a type symbol, lighting up within a grid if the instance is providing output to the user. We discuss the system's user interface, programming interface, and potential applications. This is done from a general perspective that articulates and emphasizes the uniquely enabling role of the principle of computation in the implementation of new forms of instrumental control of musical sound. Beyond the currently presented technology, this also reflects more broadly on the role of Digital Musical Instruments (DMIs) in NIME.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信