{"title":"构造光滑表面的投影线性过渡映射","authors":"Jörg Peters, Jianhua Fan","doi":"10.1109/SMI.2010.26","DOIUrl":null,"url":null,"abstract":"We exhibit the essentially unique projective linear (rational linear) reparameterization for constructing C^s surfaces of genus g>0. Conversely, for quadrilaterals and isolated vertices of valence 8, we show constructively for s=1,2 that this map yields a projective linear spline space for surfaces of genus greater or equal to 1. This establishes the reparametrization to be the simplest possible transition map.","PeriodicalId":404708,"journal":{"name":"2010 Shape Modeling International Conference","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Projective Linear Transition Map for Constructing Smooth Surfaces\",\"authors\":\"Jörg Peters, Jianhua Fan\",\"doi\":\"10.1109/SMI.2010.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit the essentially unique projective linear (rational linear) reparameterization for constructing C^s surfaces of genus g>0. Conversely, for quadrilaterals and isolated vertices of valence 8, we show constructively for s=1,2 that this map yields a projective linear spline space for surfaces of genus greater or equal to 1. This establishes the reparametrization to be the simplest possible transition map.\",\"PeriodicalId\":404708,\"journal\":{\"name\":\"2010 Shape Modeling International Conference\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Shape Modeling International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMI.2010.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Shape Modeling International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2010.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Projective Linear Transition Map for Constructing Smooth Surfaces
We exhibit the essentially unique projective linear (rational linear) reparameterization for constructing C^s surfaces of genus g>0. Conversely, for quadrilaterals and isolated vertices of valence 8, we show constructively for s=1,2 that this map yields a projective linear spline space for surfaces of genus greater or equal to 1. This establishes the reparametrization to be the simplest possible transition map.