时域深度音频隐写分析

Daewon Lee, Tae-Woo Oh, Kibom Kim
{"title":"时域深度音频隐写分析","authors":"Daewon Lee, Tae-Woo Oh, Kibom Kim","doi":"10.1145/3369412.3395064","DOIUrl":null,"url":null,"abstract":"Digital audio, as well as image, is one of the most popular media for information hiding. However, even the state-of-the-art deep learning model still has a limitation for detecting basic LSB steganography algorithms that hide secret messages in time domain of WAV audio. To advance audio steganalysis based on deep learning, deep audio steganalysis, in time domain of lossless audio format, we have developed a convolutional neural network that incorporates bit-plane separation, weight-standardized convolution, and channel attention. Training through payload curriculum learning and testing for six steganography methods demonstrated that our proposed model is superior to the other two deep learning models, achieving state-of-the-art performance. We expect our approach will provide insights to create a breakthrough for deep audio steganalysis.","PeriodicalId":298966,"journal":{"name":"Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Audio Steganalysis in Time Domain\",\"authors\":\"Daewon Lee, Tae-Woo Oh, Kibom Kim\",\"doi\":\"10.1145/3369412.3395064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital audio, as well as image, is one of the most popular media for information hiding. However, even the state-of-the-art deep learning model still has a limitation for detecting basic LSB steganography algorithms that hide secret messages in time domain of WAV audio. To advance audio steganalysis based on deep learning, deep audio steganalysis, in time domain of lossless audio format, we have developed a convolutional neural network that incorporates bit-plane separation, weight-standardized convolution, and channel attention. Training through payload curriculum learning and testing for six steganography methods demonstrated that our proposed model is superior to the other two deep learning models, achieving state-of-the-art performance. We expect our approach will provide insights to create a breakthrough for deep audio steganalysis.\",\"PeriodicalId\":298966,\"journal\":{\"name\":\"Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3369412.3395064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3369412.3395064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数字音频和图像一样,是最流行的信息隐藏媒介之一。然而,即使是最先进的深度学习模型,对于在WAV音频的时域中隐藏秘密信息的基本LSB隐写算法的检测仍然存在局限性。为了在无损音频格式的时域中推进基于深度学习、深度音频隐写分析的音频隐写分析,我们开发了一个卷积神经网络,该网络结合了位面分离、权重标准化卷积和信道注意。通过有效载荷课程学习和测试六种隐写方法的训练表明,我们提出的模型优于其他两种深度学习模型,实现了最先进的性能。我们希望我们的方法能够为深度音频隐写分析提供突破性的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Audio Steganalysis in Time Domain
Digital audio, as well as image, is one of the most popular media for information hiding. However, even the state-of-the-art deep learning model still has a limitation for detecting basic LSB steganography algorithms that hide secret messages in time domain of WAV audio. To advance audio steganalysis based on deep learning, deep audio steganalysis, in time domain of lossless audio format, we have developed a convolutional neural network that incorporates bit-plane separation, weight-standardized convolution, and channel attention. Training through payload curriculum learning and testing for six steganography methods demonstrated that our proposed model is superior to the other two deep learning models, achieving state-of-the-art performance. We expect our approach will provide insights to create a breakthrough for deep audio steganalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信