瞳孔分割不准确的识别方法

Hugo Proença, Luís A. Alexandre
{"title":"瞳孔分割不准确的识别方法","authors":"Hugo Proença, Luís A. Alexandre","doi":"10.1109/ARES.2006.9","DOIUrl":null,"url":null,"abstract":"In this paper we analyze the relationship between the accuracy of the segmentation algorithm and the error rates of typical iris recognition systems. We selected 1000 images from the UBIRIS database that the segmentation algorithm can accurately segment and artificially introduced segmentation inaccuracies. We repeated the recognition tests and concluded about the strong relationship between the errors in the pupil segmentation and the overall false reject rate. Based on this fact, we propose a method to identify these inaccuracies.","PeriodicalId":106780,"journal":{"name":"First International Conference on Availability, Reliability and Security (ARES'06)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A method for the identification of inaccuracies in pupil segmentation\",\"authors\":\"Hugo Proença, Luís A. Alexandre\",\"doi\":\"10.1109/ARES.2006.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze the relationship between the accuracy of the segmentation algorithm and the error rates of typical iris recognition systems. We selected 1000 images from the UBIRIS database that the segmentation algorithm can accurately segment and artificially introduced segmentation inaccuracies. We repeated the recognition tests and concluded about the strong relationship between the errors in the pupil segmentation and the overall false reject rate. Based on this fact, we propose a method to identify these inaccuracies.\",\"PeriodicalId\":106780,\"journal\":{\"name\":\"First International Conference on Availability, Reliability and Security (ARES'06)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Conference on Availability, Reliability and Security (ARES'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2006.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Availability, Reliability and Security (ARES'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2006.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文分析了典型虹膜识别系统中分割算法的准确率与错误率之间的关系。我们从UBIRIS数据库中选择了1000张分割算法可以准确分割的图像,并人为引入了分割不准确性。我们重复了识别测试,得出了瞳孔分割错误与整体误拒率之间的密切关系。基于这一事实,我们提出了一种识别这些不准确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for the identification of inaccuracies in pupil segmentation
In this paper we analyze the relationship between the accuracy of the segmentation algorithm and the error rates of typical iris recognition systems. We selected 1000 images from the UBIRIS database that the segmentation algorithm can accurately segment and artificially introduced segmentation inaccuracies. We repeated the recognition tests and concluded about the strong relationship between the errors in the pupil segmentation and the overall false reject rate. Based on this fact, we propose a method to identify these inaccuracies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信