基于双目视觉的地铁接触网磨损检测

Qingfeng Tang, Xiukun Wei, Siyang Jiang
{"title":"基于双目视觉的地铁接触网磨损检测","authors":"Qingfeng Tang, Xiukun Wei, Siyang Jiang","doi":"10.1109/CCDC52312.2021.9602791","DOIUrl":null,"url":null,"abstract":"Compared with the traditional catenary wear detection method, the new non-contact image detection method has the characteristics of high efficiency and high precision. In this paper, binocular vision 3D reconstruction is used to detect the abrasion of metro catenary, and in the process of self-calibration and stereo correction, topological structure constraints are proposed to improve the accuracy of the SURF feature point matching. The experimental results show that the improved feature point matching has high accuracy and good real-time performance.","PeriodicalId":143976,"journal":{"name":"2021 33rd Chinese Control and Decision Conference (CCDC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wear Detection of Metro Catenary Based on Binocular Vision\",\"authors\":\"Qingfeng Tang, Xiukun Wei, Siyang Jiang\",\"doi\":\"10.1109/CCDC52312.2021.9602791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with the traditional catenary wear detection method, the new non-contact image detection method has the characteristics of high efficiency and high precision. In this paper, binocular vision 3D reconstruction is used to detect the abrasion of metro catenary, and in the process of self-calibration and stereo correction, topological structure constraints are proposed to improve the accuracy of the SURF feature point matching. The experimental results show that the improved feature point matching has high accuracy and good real-time performance.\",\"PeriodicalId\":143976,\"journal\":{\"name\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 33rd Chinese Control and Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC52312.2021.9602791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 33rd Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC52312.2021.9602791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统接触网磨损检测方法相比,新型非接触图像检测方法具有效率高、精度高等特点。本文采用双目视觉三维重建方法检测地铁接触网的磨损情况,并在自标定和立体校正过程中,提出拓扑结构约束,提高SURF特征点匹配的精度。实验结果表明,改进后的特征点匹配精度高,实时性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wear Detection of Metro Catenary Based on Binocular Vision
Compared with the traditional catenary wear detection method, the new non-contact image detection method has the characteristics of high efficiency and high precision. In this paper, binocular vision 3D reconstruction is used to detect the abrasion of metro catenary, and in the process of self-calibration and stereo correction, topological structure constraints are proposed to improve the accuracy of the SURF feature point matching. The experimental results show that the improved feature point matching has high accuracy and good real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信