基于形态模式谱的脑电特征提取方法

Lijing Han, Lijun Zhang, Jianhong Yang, Min Li, Jinwu Xu
{"title":"基于形态模式谱的脑电特征提取方法","authors":"Lijing Han, Lijun Zhang, Jianhong Yang, Min Li, Jinwu Xu","doi":"10.1109/ICSAP.2009.19","DOIUrl":null,"url":null,"abstract":"In order to classify the mental tasks in Brain-Computer Interfaces(BCI), a feature extraction method based on morphological pattern spectrum is here proposed. Flat morphological structure element is selected according to the characteristics of electroencephalography(EEG) and morph-ological features of different scales are obtained with pattern spectrum. Then, support vector machines(SVM) is used as the classifier. Testing results show that the average classification accuracy is up to 97.7% for two kinds of mental tasks and 93.0% for five kinds of mental tasks. This method has a simple calculation and effective feature extraction performance, so it could be a valid method for real time control of EEG.","PeriodicalId":176934,"journal":{"name":"2009 International Conference on Signal Acquisition and Processing","volume":"425 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Method for EEG Feature Extraction Based on Morphological Pattern Spectrum\",\"authors\":\"Lijing Han, Lijun Zhang, Jianhong Yang, Min Li, Jinwu Xu\",\"doi\":\"10.1109/ICSAP.2009.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to classify the mental tasks in Brain-Computer Interfaces(BCI), a feature extraction method based on morphological pattern spectrum is here proposed. Flat morphological structure element is selected according to the characteristics of electroencephalography(EEG) and morph-ological features of different scales are obtained with pattern spectrum. Then, support vector machines(SVM) is used as the classifier. Testing results show that the average classification accuracy is up to 97.7% for two kinds of mental tasks and 93.0% for five kinds of mental tasks. This method has a simple calculation and effective feature extraction performance, so it could be a valid method for real time control of EEG.\",\"PeriodicalId\":176934,\"journal\":{\"name\":\"2009 International Conference on Signal Acquisition and Processing\",\"volume\":\"425 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Signal Acquisition and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAP.2009.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Signal Acquisition and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAP.2009.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了对脑机接口(BCI)中的心理任务进行分类,提出了一种基于形态模式谱的特征提取方法。根据脑电特征选择平面形态结构元素,利用模式谱获得不同尺度的形态特征。然后,使用支持向量机(SVM)作为分类器。测试结果表明,两类心理任务的平均分类准确率可达97.7%,五类心理任务的平均分类准确率可达93.0%。该方法计算简单,特征提取效果好,可作为实时控制脑电信号的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method for EEG Feature Extraction Based on Morphological Pattern Spectrum
In order to classify the mental tasks in Brain-Computer Interfaces(BCI), a feature extraction method based on morphological pattern spectrum is here proposed. Flat morphological structure element is selected according to the characteristics of electroencephalography(EEG) and morph-ological features of different scales are obtained with pattern spectrum. Then, support vector machines(SVM) is used as the classifier. Testing results show that the average classification accuracy is up to 97.7% for two kinds of mental tasks and 93.0% for five kinds of mental tasks. This method has a simple calculation and effective feature extraction performance, so it could be a valid method for real time control of EEG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信