桎梏操作图的包含局部不规则顶点着色

Madila Khomsiyanti, A. I. Kristiana, E. R. Albirri
{"title":"桎梏操作图的包含局部不规则顶点着色","authors":"Madila Khomsiyanti, A. I. Kristiana, E. R. Albirri","doi":"10.25037/cgantjma.v3i2.74","DOIUrl":null,"url":null,"abstract":"A graph  is an ordered pair of two sets V and E, written .  is the set of vertices and  is the set of edges of the graph . The labeling of the graph is defined by  where  is the labeling of the vertices. The function  is the vertex coloring of the inclusive local irregularity if . The minimum color of the inclusive local irregularity vertex coloring is called the inclusive local irregularity chromatic number. This article will discuss the coloring of inclusive local irregularities on the graph resulting from the vertex shackle operation.","PeriodicalId":305608,"journal":{"name":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Inclusive Local Irregular Vertex Coloring of Shackle Operation Graph\",\"authors\":\"Madila Khomsiyanti, A. I. Kristiana, E. R. Albirri\",\"doi\":\"10.25037/cgantjma.v3i2.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graph  is an ordered pair of two sets V and E, written .  is the set of vertices and  is the set of edges of the graph . The labeling of the graph is defined by  where  is the labeling of the vertices. The function  is the vertex coloring of the inclusive local irregularity if . The minimum color of the inclusive local irregularity vertex coloring is called the inclusive local irregularity chromatic number. This article will discuss the coloring of inclusive local irregularities on the graph resulting from the vertex shackle operation.\",\"PeriodicalId\":305608,\"journal\":{\"name\":\"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS\",\"volume\":\"362 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25037/cgantjma.v3i2.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25037/cgantjma.v3i2.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图是两个集合V和E的有序对。是顶点的集合,也是图的边的集合。图的标记由顶点的标记来定义。函数是包含局部不规则性的顶点着色。包含局部不规则顶点着色的最小颜色称为包含局部不规则色数。本文将讨论由顶点束缚操作引起的图上包含局部不规则的着色问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Inclusive Local Irregular Vertex Coloring of Shackle Operation Graph
A graph  is an ordered pair of two sets V and E, written .  is the set of vertices and  is the set of edges of the graph . The labeling of the graph is defined by  where  is the labeling of the vertices. The function  is the vertex coloring of the inclusive local irregularity if . The minimum color of the inclusive local irregularity vertex coloring is called the inclusive local irregularity chromatic number. This article will discuss the coloring of inclusive local irregularities on the graph resulting from the vertex shackle operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信