数据受限条件下的装配机产品质量控制

Fatemeh Kakavandi, R. D. Reus, C. Gomes, Negar Heidari, A. Iosifidis, P. Larsen
{"title":"数据受限条件下的装配机产品质量控制","authors":"Fatemeh Kakavandi, R. D. Reus, C. Gomes, Negar Heidari, A. Iosifidis, P. Larsen","doi":"10.1109/INDIN51773.2022.9976173","DOIUrl":null,"url":null,"abstract":"Evaluating the product quality in an assembly machine is critical yet time-consuming since, in product assessment in batch manufacturing, a certain amount of products should be investigated in an invasive manner. However, continuous manufacturing ensures product quality assessment during assembly with high efficiency and traceability. This paper proposes a quality assessment method for an industrial use case. First, the data is prepared based on two indicators and expert knowledge. Then two data classification approaches (one-class classification and binary classification) are applied to evaluate the products’ quality by analysing the related data. Finally, the most efficient model is selected to predict the product labels and deviate anomalies from normal products. For the studied use case and the limited number of products, the binary classifier guarantees to detect 100% of defective products. The proposed approach can provide the engineers and operators with understandable extracted process knowledge, and can therefore be adapted to a high-speed manufacturing line where large data volume and process complexity can be problematic.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Product Quality Control in Assembly Machine under Data Restricted Settings\",\"authors\":\"Fatemeh Kakavandi, R. D. Reus, C. Gomes, Negar Heidari, A. Iosifidis, P. Larsen\",\"doi\":\"10.1109/INDIN51773.2022.9976173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluating the product quality in an assembly machine is critical yet time-consuming since, in product assessment in batch manufacturing, a certain amount of products should be investigated in an invasive manner. However, continuous manufacturing ensures product quality assessment during assembly with high efficiency and traceability. This paper proposes a quality assessment method for an industrial use case. First, the data is prepared based on two indicators and expert knowledge. Then two data classification approaches (one-class classification and binary classification) are applied to evaluate the products’ quality by analysing the related data. Finally, the most efficient model is selected to predict the product labels and deviate anomalies from normal products. For the studied use case and the limited number of products, the binary classifier guarantees to detect 100% of defective products. The proposed approach can provide the engineers and operators with understandable extracted process knowledge, and can therefore be adapted to a high-speed manufacturing line where large data volume and process complexity can be problematic.\",\"PeriodicalId\":359190,\"journal\":{\"name\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN51773.2022.9976173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在批量生产的产品评估中,需要对一定数量的产品进行侵入式的调查,因此对装配机中的产品质量进行评估既关键又耗时。然而,连续制造以高效率和可追溯性确保了装配过程中的产品质量评估。本文提出了一种针对工业用例的质量评估方法。首先,数据是根据两个指标和专家知识准备的。然后通过对相关数据的分析,采用一类分类和二元分类两种数据分类方法对产品质量进行评价。最后,选择最有效的模型来预测产品标签并偏离正常产品的异常。对于所研究的用例和有限数量的产品,二元分类器保证检测出100%的缺陷产品。所提出的方法可以为工程师和操作员提供可理解的提取过程知识,因此可以适用于高速生产线,其中大数据量和过程复杂性可能存在问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Product Quality Control in Assembly Machine under Data Restricted Settings
Evaluating the product quality in an assembly machine is critical yet time-consuming since, in product assessment in batch manufacturing, a certain amount of products should be investigated in an invasive manner. However, continuous manufacturing ensures product quality assessment during assembly with high efficiency and traceability. This paper proposes a quality assessment method for an industrial use case. First, the data is prepared based on two indicators and expert knowledge. Then two data classification approaches (one-class classification and binary classification) are applied to evaluate the products’ quality by analysing the related data. Finally, the most efficient model is selected to predict the product labels and deviate anomalies from normal products. For the studied use case and the limited number of products, the binary classifier guarantees to detect 100% of defective products. The proposed approach can provide the engineers and operators with understandable extracted process knowledge, and can therefore be adapted to a high-speed manufacturing line where large data volume and process complexity can be problematic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信