一种快速保凸水平集分割左心室图像的方法

Xue Shi, L. Tang, Xiaoping Yang, Shaoxiang Zhang, Chunming Li
{"title":"一种快速保凸水平集分割左心室图像的方法","authors":"Xue Shi, L. Tang, Xiaoping Yang, Shaoxiang Zhang, Chunming Li","doi":"10.1145/3285996.3286007","DOIUrl":null,"url":null,"abstract":"In this paper, anatomical characteristic of convexity of left ventricles (LV) is incorporated in the level set segmentation framework to improve the accuracy of the algorithm. In order to maintain the convexity of endocardial and epicardial contour, we use the two-layer level set model combined with periodical convexification of the level sets, which eliminates the troublesome interference caused by the papillary muscle and the trabeculae. We use the MICCAI 2009 left ventricle segmentation challenge data to test and validate our method. Qualitative experiments demonstrate the effectiveness of our algorithm.","PeriodicalId":287756,"journal":{"name":"International Symposium on Image Computing and Digital Medicine","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Fast Convexity Preserving Level Set Method for Segmentation of Cardiac Left Ventricle\",\"authors\":\"Xue Shi, L. Tang, Xiaoping Yang, Shaoxiang Zhang, Chunming Li\",\"doi\":\"10.1145/3285996.3286007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, anatomical characteristic of convexity of left ventricles (LV) is incorporated in the level set segmentation framework to improve the accuracy of the algorithm. In order to maintain the convexity of endocardial and epicardial contour, we use the two-layer level set model combined with periodical convexification of the level sets, which eliminates the troublesome interference caused by the papillary muscle and the trabeculae. We use the MICCAI 2009 left ventricle segmentation challenge data to test and validate our method. Qualitative experiments demonstrate the effectiveness of our algorithm.\",\"PeriodicalId\":287756,\"journal\":{\"name\":\"International Symposium on Image Computing and Digital Medicine\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Image Computing and Digital Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3285996.3286007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Image Computing and Digital Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3285996.3286007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文在水平集分割框架中引入左心室(LV)的凸性解剖特征,以提高算法的准确率。为了保持心内膜和心外膜轮廓的凸性,我们采用了结合水平集周期性凸化的两层水平集模型,消除了乳头肌和小梁带来的麻烦干扰。我们使用MICCAI 2009左心室分割挑战数据来测试和验证我们的方法。定性实验证明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fast Convexity Preserving Level Set Method for Segmentation of Cardiac Left Ventricle
In this paper, anatomical characteristic of convexity of left ventricles (LV) is incorporated in the level set segmentation framework to improve the accuracy of the algorithm. In order to maintain the convexity of endocardial and epicardial contour, we use the two-layer level set model combined with periodical convexification of the level sets, which eliminates the troublesome interference caused by the papillary muscle and the trabeculae. We use the MICCAI 2009 left ventricle segmentation challenge data to test and validate our method. Qualitative experiments demonstrate the effectiveness of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信