评估NVIDIA A100安培GPU在稀疏和批处理计算中的性能

H. Anzt, Y. M. Tsai, A. Abdelfattah, T. Cojean, J. Dongarra
{"title":"评估NVIDIA A100安培GPU在稀疏和批处理计算中的性能","authors":"H. Anzt, Y. M. Tsai, A. Abdelfattah, T. Cojean, J. Dongarra","doi":"10.1109/PMBS51919.2020.00009","DOIUrl":null,"url":null,"abstract":"GPU accelerators have become an Important backbone for scientific high performance-computing, and the performance advances obtained from adopting new GPU hardware are significant. In this paper we take a first look at NVIDIA’s newest server-line GPU, the A100 architecture, part of the Ampere generation. Specifically, we assess its performance for sparse and batch computations, as these routines are relied upon in many scientific applications, and compare to the performance achieved on NVIDIA’s previous server-line GPU.","PeriodicalId":383727,"journal":{"name":"2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Evaluating the Performance of NVIDIA’s A100 Ampere GPU for Sparse and Batched Computations\",\"authors\":\"H. Anzt, Y. M. Tsai, A. Abdelfattah, T. Cojean, J. Dongarra\",\"doi\":\"10.1109/PMBS51919.2020.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPU accelerators have become an Important backbone for scientific high performance-computing, and the performance advances obtained from adopting new GPU hardware are significant. In this paper we take a first look at NVIDIA’s newest server-line GPU, the A100 architecture, part of the Ampere generation. Specifically, we assess its performance for sparse and batch computations, as these routines are relied upon in many scientific applications, and compare to the performance achieved on NVIDIA’s previous server-line GPU.\",\"PeriodicalId\":383727,\"journal\":{\"name\":\"2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMBS51919.2020.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMBS51919.2020.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

GPU加速器已经成为科学高性能计算的重要支柱,采用新型GPU硬件所获得的性能提升是显著的。在本文中,我们首先介绍了英伟达最新的服务器线GPU, A100架构,是安培一代的一部分。具体来说,我们评估了它在稀疏和批处理计算方面的性能,因为这些例程在许多科学应用中都是依赖的,并与NVIDIA以前的服务器线GPU所取得的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the Performance of NVIDIA’s A100 Ampere GPU for Sparse and Batched Computations
GPU accelerators have become an Important backbone for scientific high performance-computing, and the performance advances obtained from adopting new GPU hardware are significant. In this paper we take a first look at NVIDIA’s newest server-line GPU, the A100 architecture, part of the Ampere generation. Specifically, we assess its performance for sparse and batch computations, as these routines are relied upon in many scientific applications, and compare to the performance achieved on NVIDIA’s previous server-line GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信