在多系统系统中识别和减少系统杂散辐射的功能失效分析方法研究

Douglas L. Van Bossuyt, R. Arlitt
{"title":"在多系统系统中识别和减少系统杂散辐射的功能失效分析方法研究","authors":"Douglas L. Van Bossuyt, R. Arlitt","doi":"10.1115/detc2019-98255","DOIUrl":null,"url":null,"abstract":"\n Increasingly tight coupling and heavy connectedness in systems of systems (SoS) presents new problems for systems designers and engineers. While the failure of one system within a SoS may produce little collateral damage beyond a loss in SoS capability, a highly interconnected SoS can experience significant damage when one member system fails in an unanticipated way. It is therefore important to develop systems that are “good neighbors” with the other systems in a SoS by failing in ways that do not further degrade a SoS’s ability to complete its mission.\n This paper presents a method to (1) analyze a system for potential spurious emissions and (2) choose mitigation strategies that provide the best return on investment for the SoS. The method is suited for use during the system architecture phase of the system design process. A functional and flow approach to analyzing spurious emissions and developing mitigation strategies is used in the method. Use of the method may result in a system that causes less SoS damage during a failure event.","PeriodicalId":352702,"journal":{"name":"Volume 1: 39th Computers and Information in Engineering Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Toward a Functional Failure Analysis Method of Identifying and Mitigating Spurious System Emissions in a System of Systems\",\"authors\":\"Douglas L. Van Bossuyt, R. Arlitt\",\"doi\":\"10.1115/detc2019-98255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Increasingly tight coupling and heavy connectedness in systems of systems (SoS) presents new problems for systems designers and engineers. While the failure of one system within a SoS may produce little collateral damage beyond a loss in SoS capability, a highly interconnected SoS can experience significant damage when one member system fails in an unanticipated way. It is therefore important to develop systems that are “good neighbors” with the other systems in a SoS by failing in ways that do not further degrade a SoS’s ability to complete its mission.\\n This paper presents a method to (1) analyze a system for potential spurious emissions and (2) choose mitigation strategies that provide the best return on investment for the SoS. The method is suited for use during the system architecture phase of the system design process. A functional and flow approach to analyzing spurious emissions and developing mitigation strategies is used in the method. Use of the method may result in a system that causes less SoS damage during a failure event.\",\"PeriodicalId\":352702,\"journal\":{\"name\":\"Volume 1: 39th Computers and Information in Engineering Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: 39th Computers and Information in Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: 39th Computers and Information in Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多系统系统日益紧密的耦合和紧密的连通性给系统设计者和工程师提出了新的问题。虽然SoS中的一个系统的故障可能只会造成SoS能力的损失,但高度互连的SoS可能会在一个成员系统以意想不到的方式发生故障时遭受重大损害。因此,重要的是开发与SoS中的其他系统“好邻居”的系统,通过以不会进一步降低SoS完成任务的能力的方式失败。本文提出了一种方法来(1)分析潜在的虚假排放系统,(2)选择为SoS提供最佳投资回报的缓解策略。该方法适合在系统设计过程的系统架构阶段使用。该方法采用了一种功能和流动的方法来分析虚假排放并制定缓解策略。使用该方法可以使系统在故障事件中产生较少的SoS损坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward a Functional Failure Analysis Method of Identifying and Mitigating Spurious System Emissions in a System of Systems
Increasingly tight coupling and heavy connectedness in systems of systems (SoS) presents new problems for systems designers and engineers. While the failure of one system within a SoS may produce little collateral damage beyond a loss in SoS capability, a highly interconnected SoS can experience significant damage when one member system fails in an unanticipated way. It is therefore important to develop systems that are “good neighbors” with the other systems in a SoS by failing in ways that do not further degrade a SoS’s ability to complete its mission. This paper presents a method to (1) analyze a system for potential spurious emissions and (2) choose mitigation strategies that provide the best return on investment for the SoS. The method is suited for use during the system architecture phase of the system design process. A functional and flow approach to analyzing spurious emissions and developing mitigation strategies is used in the method. Use of the method may result in a system that causes less SoS damage during a failure event.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信