元启发式应用及其解决方案质量

Z. Hussain
{"title":"元启发式应用及其解决方案质量","authors":"Z. Hussain","doi":"10.1109/ICICT.2005.1598560","DOIUrl":null,"url":null,"abstract":"Over the past few decades, a wide variety of classes of combinatorial problems (e.g. the assignment problem, the knapsack problem, the vehicle routing problem, etc.) have emerged - from such areas as management science, telecommunication, AI, VLSI design and many others. Many large combinatorial problems are NP-hard problems because of the combinatorial growth of their solution search space with the problem size. Such problems are commonly solved by some version of a prominent metaheuristic (e.g. Genetic Algorithms, Tabu Search, Simulated Annealing and etc.). These heuristics seek good but approximate solutions at a reasonable computational cost. These heuristics are of stochastic nature. Heuristic researchers often make claims about the relative performance of metaheuristics without considering their stochastic nature and consequently their claims are not reliable. This paper discusses how to make an effective application of these metaheuristics to any NP-hard problem and to assess their solution quality in an acceptable way.","PeriodicalId":276741,"journal":{"name":"2005 International Conference on Information and Communication Technologies","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metaheuristic Applications and Their Solutions Quality\",\"authors\":\"Z. Hussain\",\"doi\":\"10.1109/ICICT.2005.1598560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past few decades, a wide variety of classes of combinatorial problems (e.g. the assignment problem, the knapsack problem, the vehicle routing problem, etc.) have emerged - from such areas as management science, telecommunication, AI, VLSI design and many others. Many large combinatorial problems are NP-hard problems because of the combinatorial growth of their solution search space with the problem size. Such problems are commonly solved by some version of a prominent metaheuristic (e.g. Genetic Algorithms, Tabu Search, Simulated Annealing and etc.). These heuristics seek good but approximate solutions at a reasonable computational cost. These heuristics are of stochastic nature. Heuristic researchers often make claims about the relative performance of metaheuristics without considering their stochastic nature and consequently their claims are not reliable. This paper discusses how to make an effective application of these metaheuristics to any NP-hard problem and to assess their solution quality in an acceptable way.\",\"PeriodicalId\":276741,\"journal\":{\"name\":\"2005 International Conference on Information and Communication Technologies\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Conference on Information and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT.2005.1598560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Information and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT.2005.1598560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,从管理科学、电信、人工智能、VLSI设计和许多其他领域出现了各种各样的组合问题(例如分配问题、背包问题、车辆路线问题等)。许多大型组合问题是np困难问题,因为它们的解搜索空间随着问题规模的增长而组合增长。这类问题通常由一些著名的元启发式算法(如遗传算法、禁忌搜索、模拟退火等)来解决。这些启发式算法在合理的计算成本下寻求良好但近似的解。这些启发式是随机的。启发式研究人员经常对元启发式的相对性能作出断言,而不考虑其随机性,因此他们的断言是不可靠的。本文讨论了如何有效地将这些元启发式方法应用于任何np困难问题,并以一种可接受的方式评估其解的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metaheuristic Applications and Their Solutions Quality
Over the past few decades, a wide variety of classes of combinatorial problems (e.g. the assignment problem, the knapsack problem, the vehicle routing problem, etc.) have emerged - from such areas as management science, telecommunication, AI, VLSI design and many others. Many large combinatorial problems are NP-hard problems because of the combinatorial growth of their solution search space with the problem size. Such problems are commonly solved by some version of a prominent metaheuristic (e.g. Genetic Algorithms, Tabu Search, Simulated Annealing and etc.). These heuristics seek good but approximate solutions at a reasonable computational cost. These heuristics are of stochastic nature. Heuristic researchers often make claims about the relative performance of metaheuristics without considering their stochastic nature and consequently their claims are not reliable. This paper discusses how to make an effective application of these metaheuristics to any NP-hard problem and to assess their solution quality in an acceptable way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信