一类不确定离散系统的区间预测

N. Meslem, J. Martínez
{"title":"一类不确定离散系统的区间预测","authors":"N. Meslem, J. Martínez","doi":"10.14232/actacyb.24.3.2020.12","DOIUrl":null,"url":null,"abstract":"This work presents set-valued algorithms to compute tight interval predictions of the state trajectories for a certain class of uncertain dynamical systems. Based on interval analysis and the analytic expression of the state response of discrete-time linear systems, non-conservative numerical schemes are proposed. Moreover, under some stability conditions, the convergence of the width of the predicted state enclosures is proved. The performance of the proposed set-valued algorithms are illustrated through two numerical examples and the results are compared to that obtained with an other method selected from the literature.","PeriodicalId":187125,"journal":{"name":"Acta Cybern.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interval Predictors for a Class of Uncertain Discrete-Time Systems\",\"authors\":\"N. Meslem, J. Martínez\",\"doi\":\"10.14232/actacyb.24.3.2020.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents set-valued algorithms to compute tight interval predictions of the state trajectories for a certain class of uncertain dynamical systems. Based on interval analysis and the analytic expression of the state response of discrete-time linear systems, non-conservative numerical schemes are proposed. Moreover, under some stability conditions, the convergence of the width of the predicted state enclosures is proved. The performance of the proposed set-valued algorithms are illustrated through two numerical examples and the results are compared to that obtained with an other method selected from the literature.\",\"PeriodicalId\":187125,\"journal\":{\"name\":\"Acta Cybern.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybern.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/actacyb.24.3.2020.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybern.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/actacyb.24.3.2020.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种集值算法来计算一类不确定动力系统状态轨迹的紧区间预测。基于区间分析和离散线性系统状态响应的解析表达式,提出了非保守数值格式。此外,在一定的稳定性条件下,证明了预测状态包宽度的收敛性。通过两个数值算例说明了所提出的集值算法的性能,并与文献中选择的另一种方法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval Predictors for a Class of Uncertain Discrete-Time Systems
This work presents set-valued algorithms to compute tight interval predictions of the state trajectories for a certain class of uncertain dynamical systems. Based on interval analysis and the analytic expression of the state response of discrete-time linear systems, non-conservative numerical schemes are proposed. Moreover, under some stability conditions, the convergence of the width of the predicted state enclosures is proved. The performance of the proposed set-valued algorithms are illustrated through two numerical examples and the results are compared to that obtained with an other method selected from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信