混合频率状态空间模型的从业者指南和MATLAB工具箱

Scott A. Brave, R. Butters, David Kelley
{"title":"混合频率状态空间模型的从业者指南和MATLAB工具箱","authors":"Scott A. Brave, R. Butters, David Kelley","doi":"10.2139/ssrn.3532455","DOIUrl":null,"url":null,"abstract":"The use of mixed frequency data is now common in many applications, ranging from the analysis of high frequency financial time series to large cross-sections of macroeconomic time series. In this article, we show how state space methods can easily facilitate both estimation and inference in these settings. After presenting a unified treatment of the state space approach to mixed frequency data modeling, we provide a series of applications to demonstrate how our MATLAB toolbox can make the estimation and post-processing of these models straightforward.","PeriodicalId":275253,"journal":{"name":"Operations Research eJournal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Practitioner's Guide and MATLAB Toolbox for Mixed Frequency State Space Models\",\"authors\":\"Scott A. Brave, R. Butters, David Kelley\",\"doi\":\"10.2139/ssrn.3532455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of mixed frequency data is now common in many applications, ranging from the analysis of high frequency financial time series to large cross-sections of macroeconomic time series. In this article, we show how state space methods can easily facilitate both estimation and inference in these settings. After presenting a unified treatment of the state space approach to mixed frequency data modeling, we provide a series of applications to demonstrate how our MATLAB toolbox can make the estimation and post-processing of these models straightforward.\",\"PeriodicalId\":275253,\"journal\":{\"name\":\"Operations Research eJournal\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3532455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3532455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

混合频率数据的使用现在在许多应用中都很常见,从高频金融时间序列的分析到宏观经济时间序列的大截面。在本文中,我们将展示状态空间方法如何在这些设置中轻松地促进估计和推断。在对混合频率数据建模的状态空间方法进行统一处理之后,我们提供了一系列应用程序来演示我们的MATLAB工具箱如何使这些模型的估计和后处理变得简单明了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Practitioner's Guide and MATLAB Toolbox for Mixed Frequency State Space Models
The use of mixed frequency data is now common in many applications, ranging from the analysis of high frequency financial time series to large cross-sections of macroeconomic time series. In this article, we show how state space methods can easily facilitate both estimation and inference in these settings. After presenting a unified treatment of the state space approach to mixed frequency data modeling, we provide a series of applications to demonstrate how our MATLAB toolbox can make the estimation and post-processing of these models straightforward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信