附录B各向异性弹性

{"title":"附录B各向异性弹性","authors":"","doi":"10.1002/9781119513889.app2","DOIUrl":null,"url":null,"abstract":"In linear elasticity theory, only small changes in shape are considered, and a macroscopichomogeneous, linear-elastic material is also assumed. Elastic deformations disappear completely after release. For orthotropic bodies the generalized Hooke’s law applies with nine effective elasticity constants: εxx = 1 E1 σxx − υ21 E2 σyy − υ32 E3 σzz, εyy = 1 E2 σyy − υ12 E1 σxx − υ32 E3 σzz, εzz = 1 E3 σzz − υ13 E1 σxx − υ23 E2 σyy, γyz = γzy = 1 G23 τyz = 1 G32 τzy γzx = γxz = 1 G31 τzx = 1 G13 τxz, γxy = γyx = 1 G12 τxy = 1 G21 τyx. (B.1)","PeriodicalId":407728,"journal":{"name":"Design and Analysis of Composite Structures for Automotive Applications","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Appendix B Anisotropic Elasticity\",\"authors\":\"\",\"doi\":\"10.1002/9781119513889.app2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In linear elasticity theory, only small changes in shape are considered, and a macroscopichomogeneous, linear-elastic material is also assumed. Elastic deformations disappear completely after release. For orthotropic bodies the generalized Hooke’s law applies with nine effective elasticity constants: εxx = 1 E1 σxx − υ21 E2 σyy − υ32 E3 σzz, εyy = 1 E2 σyy − υ12 E1 σxx − υ32 E3 σzz, εzz = 1 E3 σzz − υ13 E1 σxx − υ23 E2 σyy, γyz = γzy = 1 G23 τyz = 1 G32 τzy γzx = γxz = 1 G31 τzx = 1 G13 τxz, γxy = γyx = 1 G12 τxy = 1 G21 τyx. (B.1)\",\"PeriodicalId\":407728,\"journal\":{\"name\":\"Design and Analysis of Composite Structures for Automotive Applications\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design and Analysis of Composite Structures for Automotive Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119513889.app2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design and Analysis of Composite Structures for Automotive Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119513889.app2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线弹性理论中,只考虑形状的微小变化,并假设宏观均匀的线弹性材料。弹性变形在释放后完全消失。正交的机构广义胡克定律适用于9个有效弹性常数:εxx = 1 E1σxx−21 E2υσyy−32 E3υσzz,εyy = 1 E2σyy−12 E1υσxx−32 E3υσzz,εzz = 1 E3σzz−13 E1υσxx−23 E2υσyy,γyz =γzy = 1 G23τyz = 1 G32τzyγzx =γxz = 1 G31τzx = 1 G13τxz,γxy =γy = 1 G12τxy = 1 G21τyx。(责任)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Appendix B Anisotropic Elasticity
In linear elasticity theory, only small changes in shape are considered, and a macroscopichomogeneous, linear-elastic material is also assumed. Elastic deformations disappear completely after release. For orthotropic bodies the generalized Hooke’s law applies with nine effective elasticity constants: εxx = 1 E1 σxx − υ21 E2 σyy − υ32 E3 σzz, εyy = 1 E2 σyy − υ12 E1 σxx − υ32 E3 σzz, εzz = 1 E3 σzz − υ13 E1 σxx − υ23 E2 σyy, γyz = γzy = 1 G23 τyz = 1 G32 τzy γzx = γxz = 1 G31 τzx = 1 G13 τxz, γxy = γyx = 1 G12 τxy = 1 G21 τyx. (B.1)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信