{"title":"附录B各向异性弹性","authors":"","doi":"10.1002/9781119513889.app2","DOIUrl":null,"url":null,"abstract":"In linear elasticity theory, only small changes in shape are considered, and a macroscopichomogeneous, linear-elastic material is also assumed. Elastic deformations disappear completely after release. For orthotropic bodies the generalized Hooke’s law applies with nine effective elasticity constants: εxx = 1 E1 σxx − υ21 E2 σyy − υ32 E3 σzz, εyy = 1 E2 σyy − υ12 E1 σxx − υ32 E3 σzz, εzz = 1 E3 σzz − υ13 E1 σxx − υ23 E2 σyy, γyz = γzy = 1 G23 τyz = 1 G32 τzy γzx = γxz = 1 G31 τzx = 1 G13 τxz, γxy = γyx = 1 G12 τxy = 1 G21 τyx. (B.1)","PeriodicalId":407728,"journal":{"name":"Design and Analysis of Composite Structures for Automotive Applications","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Appendix B Anisotropic Elasticity\",\"authors\":\"\",\"doi\":\"10.1002/9781119513889.app2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In linear elasticity theory, only small changes in shape are considered, and a macroscopichomogeneous, linear-elastic material is also assumed. Elastic deformations disappear completely after release. For orthotropic bodies the generalized Hooke’s law applies with nine effective elasticity constants: εxx = 1 E1 σxx − υ21 E2 σyy − υ32 E3 σzz, εyy = 1 E2 σyy − υ12 E1 σxx − υ32 E3 σzz, εzz = 1 E3 σzz − υ13 E1 σxx − υ23 E2 σyy, γyz = γzy = 1 G23 τyz = 1 G32 τzy γzx = γxz = 1 G31 τzx = 1 G13 τxz, γxy = γyx = 1 G12 τxy = 1 G21 τyx. (B.1)\",\"PeriodicalId\":407728,\"journal\":{\"name\":\"Design and Analysis of Composite Structures for Automotive Applications\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design and Analysis of Composite Structures for Automotive Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119513889.app2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design and Analysis of Composite Structures for Automotive Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119513889.app2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Appendix B Anisotropic Elasticity
In linear elasticity theory, only small changes in shape are considered, and a macroscopichomogeneous, linear-elastic material is also assumed. Elastic deformations disappear completely after release. For orthotropic bodies the generalized Hooke’s law applies with nine effective elasticity constants: εxx = 1 E1 σxx − υ21 E2 σyy − υ32 E3 σzz, εyy = 1 E2 σyy − υ12 E1 σxx − υ32 E3 σzz, εzz = 1 E3 σzz − υ13 E1 σxx − υ23 E2 σyy, γyz = γzy = 1 G23 τyz = 1 G32 τzy γzx = γxz = 1 G31 τzx = 1 G13 τxz, γxy = γyx = 1 G12 τxy = 1 G21 τyx. (B.1)