基于gopv的视频流量流体马尔可夫建模

Wassim Abbessi, H. Nabli
{"title":"基于gopv的视频流量流体马尔可夫建模","authors":"Wassim Abbessi, H. Nabli","doi":"10.1109/COMNET.2010.5699804","DOIUrl":null,"url":null,"abstract":"The constant evolution of video standards and technologies and the important growth of the amount of video data in networks leads to a need to build new models for video sources. In this paper, we specify a Markovian fluid model based on GoPs (Group of Pictures) that creates a video source descriptor. This descriptor can be used to compute the loss rate observed when transmitting the video via the network. We show also how to build an artificial video traffic having the same statistical characteristics of the original source.","PeriodicalId":444734,"journal":{"name":"The Second International Conference on Communications and Networking","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GoP-based fluid Markovian modelling of video traffic\",\"authors\":\"Wassim Abbessi, H. Nabli\",\"doi\":\"10.1109/COMNET.2010.5699804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The constant evolution of video standards and technologies and the important growth of the amount of video data in networks leads to a need to build new models for video sources. In this paper, we specify a Markovian fluid model based on GoPs (Group of Pictures) that creates a video source descriptor. This descriptor can be used to compute the loss rate observed when transmitting the video via the network. We show also how to build an artificial video traffic having the same statistical characteristics of the original source.\",\"PeriodicalId\":444734,\"journal\":{\"name\":\"The Second International Conference on Communications and Networking\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Second International Conference on Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMNET.2010.5699804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Second International Conference on Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMNET.2010.5699804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

视频标准和技术的不断发展以及网络中视频数据量的重要增长导致需要为视频源建立新的模型。在本文中,我们指定了一个基于GoPs (Group of Pictures)的马尔可夫流体模型来创建视频源描述符。该描述符可用于计算网络传输视频时观察到的损失率。我们还展示了如何建立一个人工视频流量具有相同的统计特征的原始来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GoP-based fluid Markovian modelling of video traffic
The constant evolution of video standards and technologies and the important growth of the amount of video data in networks leads to a need to build new models for video sources. In this paper, we specify a Markovian fluid model based on GoPs (Group of Pictures) that creates a video source descriptor. This descriptor can be used to compute the loss rate observed when transmitting the video via the network. We show also how to build an artificial video traffic having the same statistical characteristics of the original source.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信