视频标注中多标签学习方法的实证研究

A. Dimou, Grigorios Tsoumakas, V. Mezaris, Y. Kompatsiaris, I. Vlahavas
{"title":"视频标注中多标签学习方法的实证研究","authors":"A. Dimou, Grigorios Tsoumakas, V. Mezaris, Y. Kompatsiaris, I. Vlahavas","doi":"10.1109/CBMI.2009.37","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental comparison of different approaches to learning from multi-labeled video data. We compare state-of-the-art multi-label learning methods on the Media mill Challenge dataset. We employ MPEG-7 and SIFT-based global image descriptors independently and in conjunction using variations of the stacking approach for their fusion. We evaluate the results comparing the different classifiers using both MPEG-7 and SIFT-based descriptors and their fusion. A variety of multi-label evaluation measures is used to explore advantages and disadvantages of the examined classifiers. Results give rise to interesting conclusions.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"An Empirical Study of Multi-label Learning Methods for Video Annotation\",\"authors\":\"A. Dimou, Grigorios Tsoumakas, V. Mezaris, Y. Kompatsiaris, I. Vlahavas\",\"doi\":\"10.1109/CBMI.2009.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an experimental comparison of different approaches to learning from multi-labeled video data. We compare state-of-the-art multi-label learning methods on the Media mill Challenge dataset. We employ MPEG-7 and SIFT-based global image descriptors independently and in conjunction using variations of the stacking approach for their fusion. We evaluate the results comparing the different classifiers using both MPEG-7 and SIFT-based descriptors and their fusion. A variety of multi-label evaluation measures is used to explore advantages and disadvantages of the examined classifiers. Results give rise to interesting conclusions.\",\"PeriodicalId\":417012,\"journal\":{\"name\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2009.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

本文对多标签视频数据学习的不同方法进行了实验比较。我们在Media mill Challenge数据集上比较了最先进的多标签学习方法。我们分别使用MPEG-7和基于sift的全局图像描述符,并结合使用不同的叠加方法进行融合。我们比较了使用MPEG-7和基于sift的描述符及其融合的不同分类器的结果。使用多种多标签评价措施来探索被检查分类器的优缺点。结果产生了有趣的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Study of Multi-label Learning Methods for Video Annotation
This paper presents an experimental comparison of different approaches to learning from multi-labeled video data. We compare state-of-the-art multi-label learning methods on the Media mill Challenge dataset. We employ MPEG-7 and SIFT-based global image descriptors independently and in conjunction using variations of the stacking approach for their fusion. We evaluate the results comparing the different classifiers using both MPEG-7 and SIFT-based descriptors and their fusion. A variety of multi-label evaluation measures is used to explore advantages and disadvantages of the examined classifiers. Results give rise to interesting conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信