基于多立体匹配和信念传播的光场相机阵列深度估计

Ségolène Rogge, A. Munteanu
{"title":"基于多立体匹配和信念传播的光场相机阵列深度估计","authors":"Ségolène Rogge, A. Munteanu","doi":"10.1109/3DTV.2018.8478503","DOIUrl":null,"url":null,"abstract":"Despite of the rich variety of depth estimation methods in the literature, computing accurate depth in multi-view camera systems remains a difficult computer vision problem. The paper proposes a novel depth estimation method for light field camera arrays. This work goes beyond existing depth estimation methods for light field cameras, being the first to employ an array of such cameras. The proposed method makes use of a multi-window and multi-scale stereo matching algorithm combined with global energy minimization based on belief propagation. The stereo-pair results are merged based on k-means clustering. The experiments demonstrate systematically improved depth estimation performance compared to the use of singular light field cameras. Additionally, the quality of the depth estimates is quasi constant at any location between the cameras, which holds great promise for the development of free navigation applications in the near future.","PeriodicalId":267389,"journal":{"name":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"DEPTH ESTIMATION IN LIGHT FIELD CAMERA ARRAYS BASED ON MULTI-STEREO MATCHING AND BELIEF PROPAGATION\",\"authors\":\"Ségolène Rogge, A. Munteanu\",\"doi\":\"10.1109/3DTV.2018.8478503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite of the rich variety of depth estimation methods in the literature, computing accurate depth in multi-view camera systems remains a difficult computer vision problem. The paper proposes a novel depth estimation method for light field camera arrays. This work goes beyond existing depth estimation methods for light field cameras, being the first to employ an array of such cameras. The proposed method makes use of a multi-window and multi-scale stereo matching algorithm combined with global energy minimization based on belief propagation. The stereo-pair results are merged based on k-means clustering. The experiments demonstrate systematically improved depth estimation performance compared to the use of singular light field cameras. Additionally, the quality of the depth estimates is quasi constant at any location between the cameras, which holds great promise for the development of free navigation applications in the near future.\",\"PeriodicalId\":267389,\"journal\":{\"name\":\"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DTV.2018.8478503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2018.8478503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

尽管文献中深度估计方法丰富多样,但在多视角相机系统中计算准确的深度仍然是一个计算机视觉难题。提出了一种新的光场相机阵列深度估计方法。这项工作超越了现有的光场相机深度估计方法,是第一个使用这种相机阵列的研究。该方法采用多窗口多尺度立体匹配算法,结合基于信念传播的全局能量最小化算法。基于k-means聚类对立体对结果进行合并。实验表明,与使用奇异光场相机相比,系统地提高了深度估计性能。此外,深度估计的质量在相机之间的任何位置都是准恒定的,这对于在不久的将来开发自由导航应用程序具有很大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEPTH ESTIMATION IN LIGHT FIELD CAMERA ARRAYS BASED ON MULTI-STEREO MATCHING AND BELIEF PROPAGATION
Despite of the rich variety of depth estimation methods in the literature, computing accurate depth in multi-view camera systems remains a difficult computer vision problem. The paper proposes a novel depth estimation method for light field camera arrays. This work goes beyond existing depth estimation methods for light field cameras, being the first to employ an array of such cameras. The proposed method makes use of a multi-window and multi-scale stereo matching algorithm combined with global energy minimization based on belief propagation. The stereo-pair results are merged based on k-means clustering. The experiments demonstrate systematically improved depth estimation performance compared to the use of singular light field cameras. Additionally, the quality of the depth estimates is quasi constant at any location between the cameras, which holds great promise for the development of free navigation applications in the near future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信