具有有限对称群的物体的孔径耦合

A. Ilinski, I. Zagorodnov, R. P. Tarasov
{"title":"具有有限对称群的物体的孔径耦合","authors":"A. Ilinski, I. Zagorodnov, R. P. Tarasov","doi":"10.1109/MMET.2000.890452","DOIUrl":null,"url":null,"abstract":"A numerical method for predicting the field penetrating an arbitrary opening in a symmetric body is considered. The method is based on the usage of coordinate functions of irreducible representations of the group {/spl tau//sub N/} of symmetries of the cavity. It enables one to reduce the calculation time by the factor /spl sim/N/sup 2/ and to construct numerically an inverse operator for an arbitrary excitation function. The required machine memory is also reduced by the factor N.","PeriodicalId":344401,"journal":{"name":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aperture coupling in the bodies possessing a finite symmetry group\",\"authors\":\"A. Ilinski, I. Zagorodnov, R. P. Tarasov\",\"doi\":\"10.1109/MMET.2000.890452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical method for predicting the field penetrating an arbitrary opening in a symmetric body is considered. The method is based on the usage of coordinate functions of irreducible representations of the group {/spl tau//sub N/} of symmetries of the cavity. It enables one to reduce the calculation time by the factor /spl sim/N/sup 2/ and to construct numerically an inverse operator for an arbitrary excitation function. The required machine memory is also reduced by the factor N.\",\"PeriodicalId\":344401,\"journal\":{\"name\":\"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMET.2000.890452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2000.890452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种预测穿透对称体任意开口场的数值方法。该方法基于空腔对称性群{/spl tau//sub N/}不可约表示的坐标函数的使用。它可以使计算时间减少因子/spl / sim/N/sup / 2/,并为任意激励函数构造数值上的逆算子。所需的机器内存也减少了N倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aperture coupling in the bodies possessing a finite symmetry group
A numerical method for predicting the field penetrating an arbitrary opening in a symmetric body is considered. The method is based on the usage of coordinate functions of irreducible representations of the group {/spl tau//sub N/} of symmetries of the cavity. It enables one to reduce the calculation time by the factor /spl sim/N/sup 2/ and to construct numerically an inverse operator for an arbitrary excitation function. The required machine memory is also reduced by the factor N.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信