模型检验马尔可夫决策过程的约简技术

Frank Ciesinski, C. Baier, Marcus Größer, Joachim Klein
{"title":"模型检验马尔可夫决策过程的约简技术","authors":"Frank Ciesinski, C. Baier, Marcus Größer, Joachim Klein","doi":"10.1109/QEST.2008.45","DOIUrl":null,"url":null,"abstract":"The quantitative analysis of a randomized system, modeled by a Markov decision process, against an LTL formula can be performed by a combination of graph algorithms, automata-theoretic concepts and numerical methods to compute maximal or minimal reachability probabilities. In this paper, we present various reduction techniques that serve to improve the performance of the quantitative analysis, and report on their implementation on the top of the probabilistic model checker \\LiQuor. Although our techniques are purely heuristic and cannot improve the worst-case time complexity of standard algorithms for the quantitative analysis, a series of examples illustrates that the proposed methods can yield a major speed-up.","PeriodicalId":161274,"journal":{"name":"2008 Fifth International Conference on Quantitative Evaluation of Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Reduction Techniques for Model Checking Markov Decision Processes\",\"authors\":\"Frank Ciesinski, C. Baier, Marcus Größer, Joachim Klein\",\"doi\":\"10.1109/QEST.2008.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantitative analysis of a randomized system, modeled by a Markov decision process, against an LTL formula can be performed by a combination of graph algorithms, automata-theoretic concepts and numerical methods to compute maximal or minimal reachability probabilities. In this paper, we present various reduction techniques that serve to improve the performance of the quantitative analysis, and report on their implementation on the top of the probabilistic model checker \\\\LiQuor. Although our techniques are purely heuristic and cannot improve the worst-case time complexity of standard algorithms for the quantitative analysis, a series of examples illustrates that the proposed methods can yield a major speed-up.\",\"PeriodicalId\":161274,\"journal\":{\"name\":\"2008 Fifth International Conference on Quantitative Evaluation of Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fifth International Conference on Quantitative Evaluation of Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QEST.2008.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fifth International Conference on Quantitative Evaluation of Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2008.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

随机系统的定量分析,由马尔可夫决策过程建模,针对LTL公式可以通过图算法,自动机理论概念和数值方法的组合来执行,以计算最大或最小可达性概率。在本文中,我们提出了各种用于提高定量分析性能的约简技术,并报告了它们在概率模型检查器\LiQuor上的实现。虽然我们的技术纯粹是启发式的,不能提高定量分析标准算法的最坏情况时间复杂度,但一系列的例子表明,所提出的方法可以产生很大的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction Techniques for Model Checking Markov Decision Processes
The quantitative analysis of a randomized system, modeled by a Markov decision process, against an LTL formula can be performed by a combination of graph algorithms, automata-theoretic concepts and numerical methods to compute maximal or minimal reachability probabilities. In this paper, we present various reduction techniques that serve to improve the performance of the quantitative analysis, and report on their implementation on the top of the probabilistic model checker \LiQuor. Although our techniques are purely heuristic and cannot improve the worst-case time complexity of standard algorithms for the quantitative analysis, a series of examples illustrates that the proposed methods can yield a major speed-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信