为内容丰富的HTML文档引导语义注释

Saikat Mukherjee, I. Ramakrishnan, Amarjeet Singh
{"title":"为内容丰富的HTML文档引导语义注释","authors":"Saikat Mukherjee, I. Ramakrishnan, Amarjeet Singh","doi":"10.1109/ICDE.2005.28","DOIUrl":null,"url":null,"abstract":"Enormous amount of semantic data is still being encoded in HTML documents. Identifying and annotating the semantic concepts implicit in such documents makes them directly amenable for semantic Web processing. In this paper we describe a highly automated technique for annotating HTML documents, especially template-based content-rich documents, containing many different semantic concepts per document. Starting with a (small) seed of hand-labeled instances of semantic concepts in a set of HTML documents we bootstrap an annotation process that automatically identifies unlabeled concept instances present in other documents. The bootstrapping technique exploits the observation that semantically related items in content-rich documents exhibit consistency in presentation style and spatial locality to learn a statistical model for accurately identifying different semantic concepts in HTML documents drawn from a variety of Web sources. We also present experimental results on the effectiveness of the technique.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Bootstrapping semantic annotation for content-rich HTML documents\",\"authors\":\"Saikat Mukherjee, I. Ramakrishnan, Amarjeet Singh\",\"doi\":\"10.1109/ICDE.2005.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enormous amount of semantic data is still being encoded in HTML documents. Identifying and annotating the semantic concepts implicit in such documents makes them directly amenable for semantic Web processing. In this paper we describe a highly automated technique for annotating HTML documents, especially template-based content-rich documents, containing many different semantic concepts per document. Starting with a (small) seed of hand-labeled instances of semantic concepts in a set of HTML documents we bootstrap an annotation process that automatically identifies unlabeled concept instances present in other documents. The bootstrapping technique exploits the observation that semantically related items in content-rich documents exhibit consistency in presentation style and spatial locality to learn a statistical model for accurately identifying different semantic concepts in HTML documents drawn from a variety of Web sources. We also present experimental results on the effectiveness of the technique.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

大量的语义数据仍在HTML文档中编码。识别和注释这些文档中隐含的语义概念使它们直接适用于语义Web处理。在本文中,我们描述了一种高度自动化的技术,用于注释HTML文档,特别是基于模板的内容丰富的文档,每个文档包含许多不同的语义概念。从一组HTML文档中手工标记的语义概念实例开始,我们引导一个注释过程,该过程自动识别其他文档中未标记的概念实例。自引导技术利用富内容文档中语义相关项在表示样式和空间位置上的一致性这一观察结果,学习一种统计模型,用于准确识别从各种Web源提取的HTML文档中的不同语义概念。我们还给出了该技术有效性的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrapping semantic annotation for content-rich HTML documents
Enormous amount of semantic data is still being encoded in HTML documents. Identifying and annotating the semantic concepts implicit in such documents makes them directly amenable for semantic Web processing. In this paper we describe a highly automated technique for annotating HTML documents, especially template-based content-rich documents, containing many different semantic concepts per document. Starting with a (small) seed of hand-labeled instances of semantic concepts in a set of HTML documents we bootstrap an annotation process that automatically identifies unlabeled concept instances present in other documents. The bootstrapping technique exploits the observation that semantically related items in content-rich documents exhibit consistency in presentation style and spatial locality to learn a statistical model for accurately identifying different semantic concepts in HTML documents drawn from a variety of Web sources. We also present experimental results on the effectiveness of the technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信