{"title":"审查感知推荐系统","authors":"F. Lahlou, H. Benbrahim, I. Kassou","doi":"10.4018/ijdai.2018070102","DOIUrl":null,"url":null,"abstract":"Context aware recommender systems (CARS) are recommender systems (RS) that provide recommendations according to user contexts. The first challenge for building such a system is to get the contextual information. Some works tried to get this information from reviews provided by users in addition to their ratings. However, all of these works perform important feature engineering in order to infer the context. In this article, the authors present a new CARS architecture that allows to automatically use contextual information from reviews without requiring any feature engineering. Moreover, they develop a new CARS algorithm that is tailored to textual contexts, that they call Textual Context Aware Factorization Machines (TCAFM). An empirical evaluation shows that the proposed architecture allows to significantly improve recommendation accuracy using state of the art RS and CARS algorithms, whereas TCAFM leads to additional improvements.","PeriodicalId":176325,"journal":{"name":"International Journal of Distributed Artificial Intelligence","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review Aware Recommender System\",\"authors\":\"F. Lahlou, H. Benbrahim, I. Kassou\",\"doi\":\"10.4018/ijdai.2018070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context aware recommender systems (CARS) are recommender systems (RS) that provide recommendations according to user contexts. The first challenge for building such a system is to get the contextual information. Some works tried to get this information from reviews provided by users in addition to their ratings. However, all of these works perform important feature engineering in order to infer the context. In this article, the authors present a new CARS architecture that allows to automatically use contextual information from reviews without requiring any feature engineering. Moreover, they develop a new CARS algorithm that is tailored to textual contexts, that they call Textual Context Aware Factorization Machines (TCAFM). An empirical evaluation shows that the proposed architecture allows to significantly improve recommendation accuracy using state of the art RS and CARS algorithms, whereas TCAFM leads to additional improvements.\",\"PeriodicalId\":176325,\"journal\":{\"name\":\"International Journal of Distributed Artificial Intelligence\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdai.2018070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdai.2018070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Context aware recommender systems (CARS) are recommender systems (RS) that provide recommendations according to user contexts. The first challenge for building such a system is to get the contextual information. Some works tried to get this information from reviews provided by users in addition to their ratings. However, all of these works perform important feature engineering in order to infer the context. In this article, the authors present a new CARS architecture that allows to automatically use contextual information from reviews without requiring any feature engineering. Moreover, they develop a new CARS algorithm that is tailored to textual contexts, that they call Textual Context Aware Factorization Machines (TCAFM). An empirical evaluation shows that the proposed architecture allows to significantly improve recommendation accuracy using state of the art RS and CARS algorithms, whereas TCAFM leads to additional improvements.