机器人介导治疗示范的透明学习

Alexander Tyshka, W. Louie
{"title":"机器人介导治疗示范的透明学习","authors":"Alexander Tyshka, W. Louie","doi":"10.1109/RO-MAN53752.2022.9900854","DOIUrl":null,"url":null,"abstract":"Robot-mediated therapy is an emerging field of research seeking to improve therapy for children with Autism Spectrum Disorder (ASD). Current approaches to autonomous robot-mediated therapy often focus on having a robot teach a single skill to children with ASD and lack a personalized approach to each individual. More recently, Learning from Demonstration (LfD) approaches are being explored to teach socially assistive robots to deliver personalized interventions after they have been deployed but these approaches require large amounts of demonstrations and utilize learning models that cannot be easily interpreted. In this work, we present a LfD system capable of learning the delivery of autism therapies in a data-efficient manner utilizing learning models that are inherently interpretable. The LfD system learns a behavioral model of the task with minimal supervision via hierarchical clustering and then learns an interpretable policy to determine when to execute the learned behaviors. The system is able to learn from less than an hour of demonstrations and for each of its predictions can identify demonstrated instances that contributed to its decision. The system performs well under unsupervised conditions and achieves even better performance with a low-effort human correction process that is enabled by the interpretable model.","PeriodicalId":250997,"journal":{"name":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent Learning from Demonstration for Robot-Mediated Therapy\",\"authors\":\"Alexander Tyshka, W. Louie\",\"doi\":\"10.1109/RO-MAN53752.2022.9900854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot-mediated therapy is an emerging field of research seeking to improve therapy for children with Autism Spectrum Disorder (ASD). Current approaches to autonomous robot-mediated therapy often focus on having a robot teach a single skill to children with ASD and lack a personalized approach to each individual. More recently, Learning from Demonstration (LfD) approaches are being explored to teach socially assistive robots to deliver personalized interventions after they have been deployed but these approaches require large amounts of demonstrations and utilize learning models that cannot be easily interpreted. In this work, we present a LfD system capable of learning the delivery of autism therapies in a data-efficient manner utilizing learning models that are inherently interpretable. The LfD system learns a behavioral model of the task with minimal supervision via hierarchical clustering and then learns an interpretable policy to determine when to execute the learned behaviors. The system is able to learn from less than an hour of demonstrations and for each of its predictions can identify demonstrated instances that contributed to its decision. The system performs well under unsupervised conditions and achieves even better performance with a low-effort human correction process that is enabled by the interpretable model.\",\"PeriodicalId\":250997,\"journal\":{\"name\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN53752.2022.9900854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN53752.2022.9900854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人介导疗法是一个新兴的研究领域,旨在改善自闭症谱系障碍(ASD)儿童的治疗。目前自主机器人介导的治疗方法通常侧重于让机器人教授自闭症儿童一项技能,而缺乏针对每个个体的个性化方法。最近,人们正在探索从演示中学习(LfD)的方法,教社交辅助机器人在部署后提供个性化干预,但这些方法需要大量的演示,并利用不易解释的学习模型。在这项工作中,我们提出了一个LfD系统,该系统能够利用固有可解释的学习模型,以数据高效的方式学习自闭症治疗的交付。LfD系统通过分层聚类学习任务的行为模型,然后学习一个可解释的策略来确定何时执行学习到的行为。该系统能够从不到一个小时的演示中学习,并且它的每个预测都可以识别有助于其决策的演示实例。该系统在无监督条件下表现良好,并且通过可解释模型实现的低成本人工校正过程实现更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transparent Learning from Demonstration for Robot-Mediated Therapy
Robot-mediated therapy is an emerging field of research seeking to improve therapy for children with Autism Spectrum Disorder (ASD). Current approaches to autonomous robot-mediated therapy often focus on having a robot teach a single skill to children with ASD and lack a personalized approach to each individual. More recently, Learning from Demonstration (LfD) approaches are being explored to teach socially assistive robots to deliver personalized interventions after they have been deployed but these approaches require large amounts of demonstrations and utilize learning models that cannot be easily interpreted. In this work, we present a LfD system capable of learning the delivery of autism therapies in a data-efficient manner utilizing learning models that are inherently interpretable. The LfD system learns a behavioral model of the task with minimal supervision via hierarchical clustering and then learns an interpretable policy to determine when to execute the learned behaviors. The system is able to learn from less than an hour of demonstrations and for each of its predictions can identify demonstrated instances that contributed to its decision. The system performs well under unsupervised conditions and achieves even better performance with a low-effort human correction process that is enabled by the interpretable model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信