全固态有机电化学晶体管的温度依赖性

Lukas M. Bongartz, Anton Weissbach, Matteo Cucchi, K. Leo, H. Kleemann
{"title":"全固态有机电化学晶体管的温度依赖性","authors":"Lukas M. Bongartz, Anton Weissbach, Matteo Cucchi, K. Leo, H. Kleemann","doi":"10.1109/fleps53764.2022.9781541","DOIUrl":null,"url":null,"abstract":"Organic electrochemical transistors (OECTs) are appealing platforms for neuromorphic computing and biosensing, as they mimic the brains functionality of interacting electronic and ionic charges. While their rise to date has attracted much attention and revealed excellent application potential, little is known about the underlying physics. This deficiency applies in particular to the pronounced hysteresis found in the transfer curves - a property which, applicable as short- or long-term memory effect, is essential for neuromorphic functionality. Here we report, to the best of our knowledge, on the first temperature-dependent measurements of OECTs, which reveal remarkable insights on multiple device features to allow a glimpse into the thermodynamics of the underlying electrochemical reaction.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Temperature-Dependence of All-Solid-State Organic Electrochemical Transistors\",\"authors\":\"Lukas M. Bongartz, Anton Weissbach, Matteo Cucchi, K. Leo, H. Kleemann\",\"doi\":\"10.1109/fleps53764.2022.9781541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic electrochemical transistors (OECTs) are appealing platforms for neuromorphic computing and biosensing, as they mimic the brains functionality of interacting electronic and ionic charges. While their rise to date has attracted much attention and revealed excellent application potential, little is known about the underlying physics. This deficiency applies in particular to the pronounced hysteresis found in the transfer curves - a property which, applicable as short- or long-term memory effect, is essential for neuromorphic functionality. Here we report, to the best of our knowledge, on the first temperature-dependent measurements of OECTs, which reveal remarkable insights on multiple device features to allow a glimpse into the thermodynamics of the underlying electrochemical reaction.\",\"PeriodicalId\":221424,\"journal\":{\"name\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/fleps53764.2022.9781541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

有机电化学晶体管(OECTs)是神经形态计算和生物传感的诱人平台,因为它们模拟了相互作用的电子和离子电荷的大脑功能。尽管迄今为止它们的兴起已经引起了人们的广泛关注,并显示出极好的应用潜力,但人们对其潜在的物理特性知之甚少。这一缺陷尤其适用于在传递曲线中发现的明显的迟滞,这种特性适用于短期或长期记忆效应,对神经形态功能至关重要。在这里,据我们所知,我们报告了oect的第一次温度相关测量,它揭示了对多个器件特征的非凡见解,从而可以一瞥潜在电化学反应的热力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature-Dependence of All-Solid-State Organic Electrochemical Transistors
Organic electrochemical transistors (OECTs) are appealing platforms for neuromorphic computing and biosensing, as they mimic the brains functionality of interacting electronic and ionic charges. While their rise to date has attracted much attention and revealed excellent application potential, little is known about the underlying physics. This deficiency applies in particular to the pronounced hysteresis found in the transfer curves - a property which, applicable as short- or long-term memory effect, is essential for neuromorphic functionality. Here we report, to the best of our knowledge, on the first temperature-dependent measurements of OECTs, which reveal remarkable insights on multiple device features to allow a glimpse into the thermodynamics of the underlying electrochemical reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信