基于高光谱数据的不同碳钙含量土壤神经网络分类

D. Ryskova, A. Nikonorov, A. Pirogov, A. Makarov, R. Skidanov, A. Muzyka, V. Podlipnov, N. Firsov, N. Ivliev, V. Lobanov
{"title":"基于高光谱数据的不同碳钙含量土壤神经网络分类","authors":"D. Ryskova, A. Nikonorov, A. Pirogov, A. Makarov, R. Skidanov, A. Muzyka, V. Podlipnov, N. Firsov, N. Ivliev, V. Lobanov","doi":"10.1109/ITNT57377.2023.10139139","DOIUrl":null,"url":null,"abstract":"The paper proposes approaches for the classification of high-resolution hyperspectral images in the problem of classification of soil species classification. A spectral-spatial convolutional neural network with compensation for illumination variations is used as a classifier. The effectiveness of the proposed approach in the problem of classification of hyperspectral images of soils obtained by a scanning type hyperspectrometer is shown. A multiclass neural network is compared with an ensemble in which the results of a multiclass neural network are refined by several binary classifiers. It is shown that the use of normalization of illumination inhomogeneity and the use of an ensemble of convolutional spatial-spectral neural networks can significantly increase the accuracy of soil type classification.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"47 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network classification of soils with different carbon and calcium content based on hyperspectral data\",\"authors\":\"D. Ryskova, A. Nikonorov, A. Pirogov, A. Makarov, R. Skidanov, A. Muzyka, V. Podlipnov, N. Firsov, N. Ivliev, V. Lobanov\",\"doi\":\"10.1109/ITNT57377.2023.10139139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes approaches for the classification of high-resolution hyperspectral images in the problem of classification of soil species classification. A spectral-spatial convolutional neural network with compensation for illumination variations is used as a classifier. The effectiveness of the proposed approach in the problem of classification of hyperspectral images of soils obtained by a scanning type hyperspectrometer is shown. A multiclass neural network is compared with an ensemble in which the results of a multiclass neural network are refined by several binary classifiers. It is shown that the use of normalization of illumination inhomogeneity and the use of an ensemble of convolutional spatial-spectral neural networks can significantly increase the accuracy of soil type classification.\",\"PeriodicalId\":296438,\"journal\":{\"name\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"volume\":\"47 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNT57377.2023.10139139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对土壤物种分类问题,提出了高分辨率高光谱图像的分类方法。采用具有光照变化补偿的光谱-空间卷积神经网络作为分类器。结果表明,该方法在扫描型高光谱仪土壤高光谱图像分类问题中是有效的。将多类神经网络与集成进行了比较,在集成中,多类神经网络的结果由几个二元分类器进行了改进。结果表明,采用光照非均匀性归一化和卷积空间-光谱神经网络集合可以显著提高土壤类型分类的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network classification of soils with different carbon and calcium content based on hyperspectral data
The paper proposes approaches for the classification of high-resolution hyperspectral images in the problem of classification of soil species classification. A spectral-spatial convolutional neural network with compensation for illumination variations is used as a classifier. The effectiveness of the proposed approach in the problem of classification of hyperspectral images of soils obtained by a scanning type hyperspectrometer is shown. A multiclass neural network is compared with an ensemble in which the results of a multiclass neural network are refined by several binary classifiers. It is shown that the use of normalization of illumination inhomogeneity and the use of an ensemble of convolutional spatial-spectral neural networks can significantly increase the accuracy of soil type classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信